Satellite Image Analysis

(Illustrations)

- height: 800 1200 km
- orbit time: ≈ 100 min
- inclination: 98°
- non-spherical shape of Earth
 - \rightarrow torque on satellite
 - \rightarrow precession once per year:
 - \rightarrow always same orientation relative to sun

orbital path in near-polar orbit (1 day)

orbital path in near-polar orbit (1 day)

NOAA II

Three Orbits on 22 March 1990

Start time: 0258 UTC End time: 0804 UTC

- a = 7229.606 km i = 98.97446° € = 0.00119958 M₀=192.28166°
- $\Omega_0 = 29.31059^\circ$ $\omega_0 = 167.74754^\circ$ Epoch time = 22 Mar 1990 1^h 15^m 52.353^s UTC

Nodal Period = 102.0764 min

ground track, 3 orbits of sun-synchr. sat.

Geostationary Orbit

- one orbit per day
 - \rightarrow satellite "fixed" with respect to Earth surface
 - → *h* ≈ 36 000 km (!)

Wavelength

[NASA/Wikipedia: http: // en. wikipedia. org/ wiki/ File: Atmospheric_ electromagnetic_ opacity. svg]

name	wavelength range	radiation source	surface property
			of interest
Visible	$0.4\text{-}0.7~\mu\mathrm{m}$	solar	reflectance
Near Infrared	$0.7\text{-}1.1 \ \mu \text{m}$	solar	reflectance
(NIR)			
Short Wave	$1.1\text{-}1.35 \ \mu \text{m}$	solar	reflectance
Infrared	$1.4\text{-}1.8~\mu\mathrm{m}$		
(SWIR)	$2\text{-}2.5~\mu\mathrm{m}$		
Mid Infrared	$3-4 \ \mu m$	solar,thermal	reflectance,
(MWIR)	4.5 -5 $\mu { m m}$	solar, thermal	temperature
Thermal	$8-9.5 \ \mu \mathrm{m}$	thermal	temperature
Infrared (TIR)	10-14 μm		
microwave, radar	$1 \mathrm{mm} - 1 \mathrm{m}$	thermal (passive)	temperature (passive)
		artificial (active)	roughness(active)

(adapted from from [3])

Original image of Eyafjall, Iceland, by webcam of an Icelandic telecommunication company

Linear contrast stretch applied

low contrast

setting lower threshold above the dark peak: all pixels darker than that are now black (value 0)

display	sensor spectral band		
colour	True Colour	Colour IR	False Colour
red (R)	red	NIR	any
green (G)	green	red	any
blue (B)	blue	green	any

TIR

Figure 5.7 Six-band multispectral scanner data, Yakima River valley, Washington, mid-August 1997: (a) band 1, 0. to 0.52 μ m (blue); (b) band 2, 0.52 to 0.60 μ m (green); (c) band 3, 0.63 to 0.69 μ m (red); (d) band 4, 0.76 to 0.90 μ (near IR); (e) band 5, 0.91 to 1.05 μ m (near IR); (f) band 6, 8.0 to 12.5 μ m (thermal IR). Scale 1:50,000. (Courtesy Set sys Technologies, Inc.)

Blue

NIR2

(adapted from [2])

True Color

False Color "Color IR": R=NIR G=Red B=Green

Plate 10 Multispectral scanner images, Yakima River valley, WA, mid-August: (*a*) normal color composite, bands 1, 2, and 3 (blue, green, and red) shown in Figure 5.7; (*b*) color IR composite, bands, 2, 3, and 5 (green, red, and near-IR) shown in Figure 5.7. Scale 1:34,000. (Courtesy Sensys Technologies, Inc.) (For major discussion, see Section 5.5.)

And a state of the state of the

NIR 1 xxx Sand xxx vegetation tt water > red

Band 4 digital number -----

Band 3 digital number

(adapted from [2])

References

- [1] S. Q. Kidder and T. H. VonderHaar. Satellite meteorology: an introduction. Academic Press, San Diego, Calif., 1995. ISBN 0-12-406430-2.
- [2] T. Lillesand and R. Kiefer. Remote Sensing and Image Interpretation. Wiley, 2000.
- [3] R. A. Schowengerdt. Remote Sensing, Models and Methods for Image Processing. Academic Press, 1997.