Satellite Image Analysis

Christian Melsheimer

April 29, 2020

The lab on satellite image analysis deals with a very typical application, the extraction of land use information.

Starting point is an image recorded by a satellite, which is then analysed in order to extract information on the type of ground cover (e.g., vegetation, water, urban area).

The following gives a very brief summary of concept necessary for this lab experiment. Some topics will be treated later in other lectures as well.

As the title implies, there are 3 topics to deal with:

Satellites: How fast/high? Where? When? Orbits, height, ...

Images: Which wavelength? What instrument? Digital? How to display? ...

Analysis: How to distinguish, e.g., forest from water? Automatically?

1 Satellites

1.1 Circular orbit

• satellite: mass m, orbit height h, orbit radius r, speed v, angular velocity $\omega = v/r$

• force of gravity:

$$F_g = mg \left(\frac{R_E}{r}\right)^2 \tag{1}$$

where $g = 9.81 \text{ m/s}^2$ is the acceleration of gravity at the Earth surface

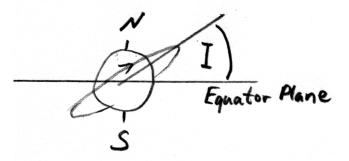
• centripetal force (for circular orbit):

$$F_c = m\omega^2 r = \frac{mv^2}{r} \tag{2}$$

• circular orbit: $F_g = F_c$

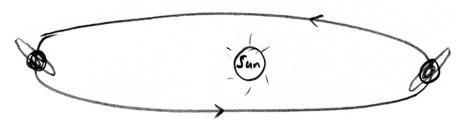
$$\Rightarrow mg\left(\frac{R_E}{r}\right)^2 = \frac{v^2}{r} \Rightarrow v = \sqrt{\frac{gR_E^2}{r}} \tag{3}$$

Note: No dependence on satellite mass!


• orbital period:

$$T = \frac{2\pi}{\omega} = \frac{2\pi r}{v} = 2\pi r \sqrt{\frac{r}{gR_E^2}} \tag{4}$$

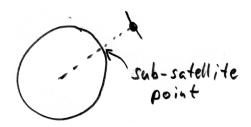
- Example: geostationary orbit (communication satellites): T = 23h56min $\Rightarrow r = [T\sqrt{g}R_E/(2\pi)]^{2/3}$ $\Rightarrow h = r - R_E = \ldots = 35808$ km.
- Example: many remote sensing satellites: $h \approx 800$ km $\Rightarrow v = 7.46$ km/s, $T \approx 101$ min.
- Note: T dictates h and vice versa


1.2 Sun-synchronous orbit

• Inclination I = angle between equator plane and orbital plane

- equator-crossing South-North = "ascending node"
- Earth not spherical (gravitation potential = $\frac{1}{r}$ + higher order terms)
- \Rightarrow precession of orbit if orbit not in equator plane
- Precession frequency = function of I and r

for I = 98°, precession period is 1 year!
i.e., position of orbit relative to sun is constant



- \Rightarrow satellite passes over same latitude at the same local time
- this is called "sun-synchronous orbit"
- useful to avoid varying illumination conditions caused by different time of day
- used by most remote-sensing satellites
- Note: seasonal variation of illumination cannot be avoided:

Approximate sun elevation angle at local noon for some locations and the 4 seasons

	21 Dec	21 Mar/22 Sep	21 Jun
Bremen, 53°N	14°	37.5°	61°
Delhi, 28°N	39°	63°	85°
Singapore, 1°N	65.5°	90°	67.5°
	(over S horizon)	(zenith)	(over N horizon)

• ground track of sun-synchronous, near polar orbiting satellite: wavy line

• repeat passes: After a number of orbits, sub-satellite point retraces its path → repeat cycle.

2 Images

2.1 Satellite sensors

- active sensors: sensor produces its own illumination of object (e.g., Radar, Lidar)
- passive sensors: sensor uses radiation emitted/reflected/scattered by object (e.g., Radiometers)

	0	Schong of the Lart.	
name	wavelength range	radiation source	surface property
			of interest
Visible	$0.4\text{-}0.7~\mu\mathrm{m}$	solar	reflectance
Near Infrared	$0.7\text{-}1.1 \ \mu \text{m}$	solar	reflectance
(NIR)			
Short Wave	1.1 - $1.35 \ \mu m$	solar	reflectance
Infrared	$1.4\text{-}1.8 \ \mu \text{m}$		
(SWIR)	$2\text{-}2.5~\mu\mathrm{m}$		
Mid Infrared	$3-4 \ \mu m$	solar,thermal	reflectance,
(MWIR)	$4.5\text{-}5~\mu\mathrm{m}$	solar, thermal	temperature
Thermal	$8-9.5 \ \mu \mathrm{m}$	thermal	temperature
Infrared (TIR)	10-14 $\mu {\rm m}$		
microwave, radar	1 mm – 1 m	thermal (passive)	temperature (passive)
		artificial (active)	roughness(active)

• wavelength ranges used in remote sensing of the Earth:

- From now on: only visible/NIR passive sensor (the type relevant for the satellite image analysis experiment)
- sensor measures radiance, i.e., intensity of radiation
- \Rightarrow constructs 2-dimensional image from many point measurements (=digital image)
- uses movement of satellite (see Figure 1), scans cross-track, or has an array of detectors/sensors

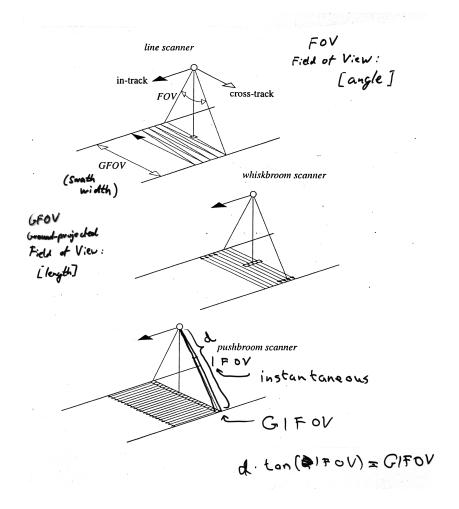


Figure 1: Scanning of the ground by a satellite

- IFOV = instantaneous field of view: angle, size depends on instrument (optics) and wavelength
- ground-projected IFOV (GIFOV) depends on IFOV and height; dimension: length
- GIFOV ≈ spatial resolution (minimum distance two small objects must have to be imaged separately)
- Spatial resolution of visible/NIR satellites: 1 m 1000 m

- Multi-spectral sensors: several frequency ranges at once, e.g., blue, green, red, NIR (4 "spectral channels")
- hyperspectral sensors: dozens to hundreds of spectral channels

2.2 Digital images

Definition: Digital image

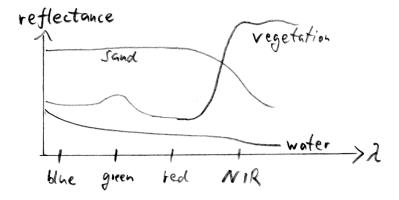
- 2-dimensional array (=matrix) of radiance measurements (=digital numbers) = pixels
- typical: (several hundreds to several thousands)² pixels
- \bullet e.g., 1300 \times 1300 pixels, stored on computer as 1300 lines with 1300 digital numbers each
- typical: 8 bit (=1 byte) per pixel, i.e., 256 different pixel values: 0...255
- displayed as grey levels, by convention usually 0=black and 255=white, also called "half-tone image" (black, grey shades, white)

Histogram, Contrast enhancement

- grey-level histogram shows the frequency of occurrence of each grey level
- histogram shows if all possible grey levels are used, i.e. if there is good contrast
- grey levels can be transformed to enhance contrast
- Example: darkest pixel has value D = 100 and brightest D = 151 \Rightarrow linear transform $D_{new} = 5(D - 100)$ transforms 100 to 0 and 151 to 255, stretching the contrast.

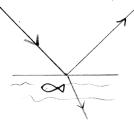
Colour images

- needs image with 3 channels which are displayed in red (R), green (G) and blue (B) RGB colour.
- why RGB? Human eye has 3 types of colour receptors ("cones"), sensitive to red, green, and blue light (approximately)

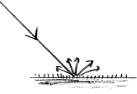

Result: True colour or false colour image:							
display	sensor spectral band						
colour	True Colour	Colour IR	False Colour				
red (R)	red	NIR	any				
green (G)	green	red	any				
blue (B)	blue	green	any				

• Note: A single-channel image can also be displayed as colour by using a range of colours ("palette", "colour table") instead of the grey levels – this is called pseudo-colour

3 Image Analysis


3.1 Scattering/Reflection in Visible/NIR

- Different materials reflect/scatter different wavelengths differently
- In other words: Different materials have different spectral signatures
- Most important fact here: strong reflection of NIR by vegetation:

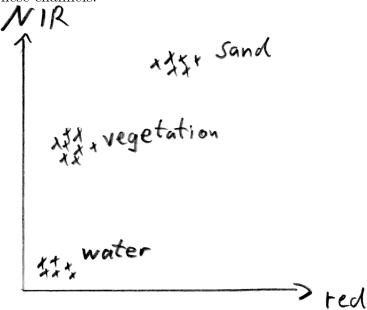


• surface structure (on the wavelength scale) matters as well:

- smooth surfaces (e.g., water surface¹) cause specular reflection:

- rough surfaces (e.g., soil, grass, roads) cause diffuse reflection:

 distributed scatterers (e.g., leaves, twigs, branches in forest) cause multiple scattering, sometimes called volume scattering


3.2 Surface type classification

- use the difference in spectral signatures for distinguishing surface types
- Vegetation density is a decisive feature of most surface types: e.g., fields and urban areas can be distinguished mainly by there different

 $^{^1\}mathrm{Note}$ that a portion of light at the water surface is also refracted into the water and is scattered and/or absorbed there

vegetation density

• Using just the red channel and the NIR channel, a lot can be done: Plot pixels in a red-NIR scatter plot according to their pixel values in these channels:

- ⇒ pixels representing different surface types often group into distinct clouds ("clusters")
- Semi-automatic classification algorithm (rather simplistic, but working):
 - 1. select areas whose type is known ("training areas"), e.g., from a map; one training area for each surface type
 - 2. display red-NIR scatter plot, and get the ranges in red and NIR that the cluster corresponding to each surface type occupies
 - 3. classify pixels from unknown areas according to the ranges from previous step

This is a so-called "parallelepiped² classifier"

 $^{^{2}}a$ kind of N-dim. box