

Stratospheric Chemistry Kinetics modeling

Practical Environmental Measurements Techniques

Dr. Nikos Daskalakis, e-mail:**daskalakis@uni-bremen.de** January 10, 2019

Laboratory for Modeling and Observation of the Earth System

Stratospheric Chemistry

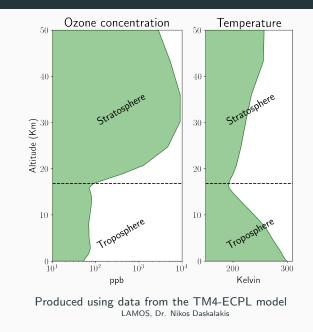
- 1881: Hartely proposes ozone's presence in the upper atmosphere.
- 1924: First ozone measurements by G.M.B. Dobson in Oxford.
- 1929: Chapman proposes the reaction sequence governing stratospheric Ozone (Chapman mechanism).←The first O₃ model!
- 1950: Bates and Nicolete propose the reactive hydrogen species catalytic destruction cycles.
- 1966–1971: Hampson (1966), Crutzen (1970) and Johnston (1971) propose a second catalytic destruction cycle involving the reactive nitrogen species.
- 1968: Brewer and Wilson measure the average total ozone column.
- 1968: Deutsch shows that ozone is more abundant at high latitudes.
- 1974: Stolarski and Cicerone, and Rowland and Molina propose cycles involving reactive chlorine.
- 1975: Wofsy proposes destructive catalytic cycle involving bromine.

- 1881: Hartely proposes ozone's presence in the upper atmosphere.
- 1924: First ozone measurements by G.M.B. Dobson in Oxford.
- 1929: Chapman proposes the reaction sequence governing stratospheric Ozone (Chapman mechanism).←The first O₃ model!
- 1950: Bates and Nicolete propose the reactive hydrogen species catalytic destruction cycles.
- 1966–1971: Hampson (1966), Crutzen (1970) and Johnston (1971) propose a second catalytic destruction cycle involving the reactive nitrogen species.
- 1968: Brewer and Wilson measure the average total ozone column.
- 1968: Deutsch shows that ozone is more abundant at high latitudes.
- 1974: Stolarski and Cicerone, and Rowland and Molina propose cycles involving reactive chlorine.
- 1975: Wofsy proposes destructive catalytic cycle involving bromine.

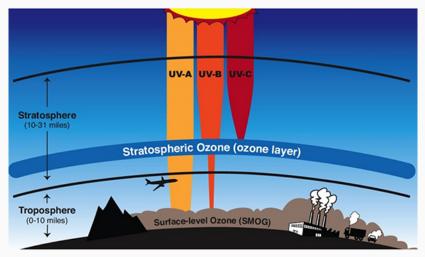
- 1881: Hartely proposes ozone's presence in the upper atmosphere.
- 1924: First ozone measurements by G.M.B. Dobson in Oxford.
- 1929: Chapman proposes the reaction sequence governing stratospheric Ozone (Chapman mechanism).←The first O₃ model!
- 1950: Bates and Nicolete propose the reactive hydrogen species catalytic destruction cycles.
- 1966–1971: Hampson (1966), Crutzen (1970) and Johnston (1971) propose a second catalytic destruction cycle involving the reactive nitrogen species.
- 1968: Brewer and Wilson measure the average total ozone column.
- 1968: Deutsch shows that ozone is more abundant at high latitudes.
- 1974: Stolarski and Cicerone, and Rowland and Molina propose cycles involving reactive chlorine.
- 1975: Wofsy proposes destructive catalytic cycle involving bromine.

- 1881: Hartely proposes ozone's presence in the upper atmosphere.
- 1924: First ozone measurements by G.M.B. Dobson in Oxford.
- 1929: Chapman proposes the reaction sequence governing stratospheric Ozone (Chapman mechanism).←The first O₃ model!
- 1950: Bates and Nicolete propose the reactive hydrogen species catalytic destruction cycles.
- 1966–1971: Hampson (1966), Crutzen (1970) and Johnston (1971) propose a second catalytic destruction cycle involving the reactive nitrogen species.
- 1968: Brewer and Wilson measure the average total ozone column.
- 1968: Deutsch shows that ozone is more abundant at high latitudes.
- 1974: Stolarski and Cicerone, and Rowland and Molina propose cycles involving reactive chlorine.
- 1975: Wofsy proposes destructive catalytic cycle involving bromine.

- 1881: Hartely proposes ozone's presence in the upper atmosphere.
- 1924: First ozone measurements by G.M.B. Dobson in Oxford.
- 1929: Chapman proposes the reaction sequence governing stratospheric Ozone (Chapman mechanism).←The first O₃ model!
- 1950: Bates and Nicolete propose the reactive hydrogen species catalytic destruction cycles.
- 1966–1971: Hampson (1966), Crutzen (1970) and Johnston (1971) propose a second catalytic destruction cycle involving the reactive nitrogen species.
- 1968: Brewer and Wilson measure the average total ozone column.
- 1968: Deutsch shows that ozone is more abundant at high latitudes.
- 1974: Stolarski and Cicerone, and Rowland and Molina propose cycles involving reactive chlorine.
- 1975: Wofsy proposes destructive catalytic cycle involving bromine.


- 1881: Hartely proposes ozone's presence in the upper atmosphere.
- 1924: First ozone measurements by G.M.B. Dobson in Oxford.
- 1929: Chapman proposes the reaction sequence governing stratospheric Ozone (Chapman mechanism).←The first O₃ model!
- 1950: Bates and Nicolete propose the reactive hydrogen species catalytic destruction cycles.
- 1966–1971: Hampson (1966), Crutzen (1970) and Johnston (1971) propose a second catalytic destruction cycle involving the reactive nitrogen species.
- 1968: Brewer and Wilson measure the average total ozone column.
- 1968: Deutsch shows that ozone is more abundant at high latitudes.
- 1974: Stolarski and Cicerone, and Rowland and Molina propose cycles involving reactive chlorine.
- 1975: Wofsy proposes destructive catalytic cycle involving bromine.

- 1881: Hartely proposes ozone's presence in the upper atmosphere.
- 1924: First ozone measurements by G.M.B. Dobson in Oxford.
- 1929: Chapman proposes the reaction sequence governing stratospheric Ozone (Chapman mechanism).←The first O₃ model!
- 1950: Bates and Nicolete propose the reactive hydrogen species catalytic destruction cycles.
- 1966–1971: Hampson (1966), Crutzen (1970) and Johnston (1971) propose a second catalytic destruction cycle involving the reactive nitrogen species.
- 1968: Brewer and Wilson measure the average total ozone column.
- 1968: Deutsch shows that ozone is more abundant at high latitudes.
- 1974: Stolarski and Cicerone, and Rowland and Molina propose cycles involving reactive chlorine.
- 1975: Wofsy proposes destructive catalytic cycle involving bromine.


- 1881: Hartely proposes ozone's presence in the upper atmosphere.
- 1924: First ozone measurements by G.M.B. Dobson in Oxford.
- 1929: Chapman proposes the reaction sequence governing stratospheric Ozone (Chapman mechanism).←The first O₃ model!
- 1950: Bates and Nicolete propose the reactive hydrogen species catalytic destruction cycles.
- 1966–1971: Hampson (1966), Crutzen (1970) and Johnston (1971) propose a second catalytic destruction cycle involving the reactive nitrogen species.
- 1968: Brewer and Wilson measure the average total ozone column.
- 1968: Deutsch shows that ozone is more abundant at high latitudes.
- 1974: Stolarski and Cicerone, and Rowland and Molina propose cycles involving reactive chlorine.
- 1975: Wofsy proposes destructive catalytic cycle involving bromine.

- 1881: Hartely proposes ozone's presence in the upper atmosphere.
- 1924: First ozone measurements by G.M.B. Dobson in Oxford.
- 1929: Chapman proposes the reaction sequence governing stratospheric Ozone (Chapman mechanism).←The first O₃ model!
- 1950: Bates and Nicolete propose the reactive hydrogen species catalytic destruction cycles.
- 1966–1971: Hampson (1966), Crutzen (1970) and Johnston (1971) propose a second catalytic destruction cycle involving the reactive nitrogen species.
- 1968: Brewer and Wilson measure the average total ozone column.
- 1968: Deutsch shows that ozone is more abundant at high latitudes.
- 1974: Stolarski and Cicerone, and Rowland and Molina propose cycles involving reactive chlorine.
- 1975: Wofsy proposes destructive catalytic cycle involving bromine.

O_3 and temperature vertical distribution in the atmosphere

Importance of the O₃ layer

Credit: NASA

Chapman mechanism

• Chapman theory

- describes how sunlight converts the various forms of oxygen from one to another.
- Explains why the highest content of ozone occurs in the layer between 15–50 km.
- Explains the stratospheric ozone layer!
- Fails to quantitatively explain the ozone concentrations in the stratosphere.

Chapman mechanism

- Chapman theory
 - describes how sunlight converts the various forms of oxygen from one to another.
 - Explains why the highest content of ozone occurs in the layer between 15–50 km.
- Explains the stratospheric ozone layer!
- Fails to quantitatively explain the ozone concentrations in the stratosphere.

- Chapman theory
 - describes how sunlight converts the various forms of oxygen from one to another.
 - Explains why the highest content of ozone occurs in the layer between 15–50 km.
- Explains the stratospheric ozone layer!
- Fails to quantitatively explain the ozone concentrations in the stratosphere.

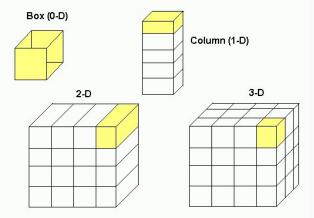
- Chapman theory
 - describes how sunlight converts the various forms of oxygen from one to another.
 - Explains why the highest content of ozone occurs in the layer between 15–50 km.
- Explains the stratospheric ozone layer!
- Fails to quantitatively explain the ozone concentrations in the stratosphere.

- Chapman theory
 - describes how sunlight converts the various forms of oxygen from one to another.
 - Explains why the highest content of ozone occurs in the layer between 15–50 km.
- Explains the stratospheric ozone layer!
- Fails to quantitatively explain the ozone concentrations in the stratosphere.

Chapman cycle

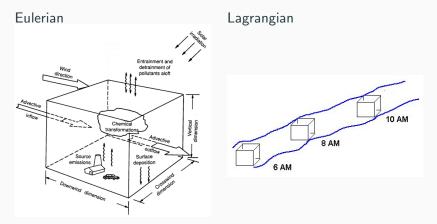
Source: Connolly and Connolly, 2013

Catalytic ozone destruction by CFCs

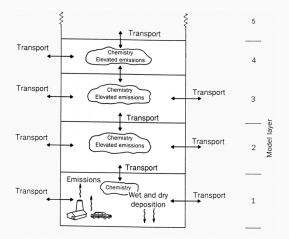

Credit:UCAR/COMET

Atmospheric Models

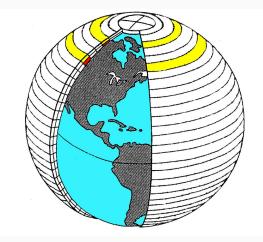
Atmospheric Model


A **tool** based on **mathematics** aimed to give a *numerical representation* of our **current knowledge** of the processes determining atmospheric composition.

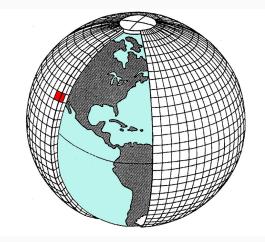
Model dimensions


http://irina.eas.gatech.edu/lectures/Lec29.htm

Box (or 0D) models


http://irina.eas.gatech.edu/lectures/Lec29.htm

Single column (or 1D) models


http://irina.eas.gatech.edu/lectures/Lec29.htm

2D models

http://irina.eas.gatech.edu/lectures/Lec29.htm

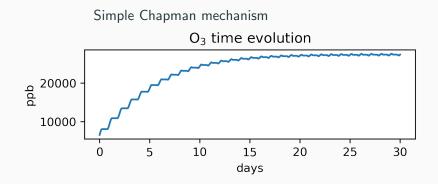
3D models

http://irina.eas.gatech.edu/lectures/Lec29.htm

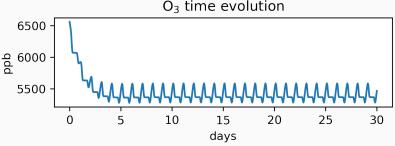
KPP, Kinetic PreProcessor

KPP – Kinetic PreProcessor

The KPP kinetic preprocessor is a software tool that assists the computer simulation of chemical kinetic systems. The concentrations of a chemical system evolve in time according to the differential law of mass action kinetics. A numerical simulation requires an implementation of the differential laws and a numerical integration in time.


• KPP is NOT a model!

- KPP produces a model
- based on human readable chemical equations and reaction rates.
- The produced model can solve the chemical equilibrium system's evolution over time


- KPP is NOT a model!
- KPP produces a model
- based on human readable chemical equations and reaction rates.
- The produced model can solve the chemical equilibrium system's evolution over time

- KPP is NOT a model!
- KPP produces a model
- based on human readable chemical equations and reaction rates.
- The produced model can solve the chemical equilibrium system's evolution over time

- KPP is NOT a model!
- KPP produces a model
- based on human readable chemical equations and reaction rates.
- The produced model can solve the chemical equilibrium system's evolution over time

Full stratospheric chemistry mechanism containing more than 100 reactions

O₃ time evolution

Example

- Know the chemical equations and reaction rates!
- Create the mandatory KPP files
 - model.kpp ← This defines the model.
 - model.eqn. This contains all the chemical equations and reaction rate coefficients
 - model.spc 4 This defines all the different chemical species and that are used in the model.
 - model def e= "This includes information for use during the simulation
- Create the model
- Compile and run the model
- Process the results

- Know the chemical equations and reaction rates!
- Create the mandatory KPP files
 - model.kpp ← This defines the model
 - model.eqn ← This contains all the chemical equations and reaction rate coefficients
 - model.spc ← This defines all the different chemical species that are used in the model
 - model.def ← This includes information for use during the simulation
- Create the model
- Compile and run the model
- Process the results

- Know the chemical equations and reaction rates!
- Create the mandatory KPP files
 - model.kpp ← This defines the model
 - model.eqn ← This contains all the chemical equations and reaction rate coefficients
 - model.spc ← This defines all the different chemical species that are used in the model
 - model.def ← This includes information for use during the simulation
- Create the model
- Compile and run the model
- Process the results

- Know the chemical equations and reaction rates!
- Create the mandatory KPP files
 - model.kpp ← This defines the model
 - model.eqn ← This contains all the chemical equations and reaction rate coefficients
 - model.spc ← This defines all the different chemical species that are used in the model
 - model.def ← This includes information for use during the simulation
- Create the model
- Compile and run the model
- Process the results

- Know the chemical equations and reaction rates!
- Create the mandatory KPP files
 - model.kpp ← This defines the model
 - model.eqn ← This contains all the chemical equations and reaction rate coefficients
 - model.spc ← This defines all the different chemical species that are used in the model
 - model.def ← This includes information for use during the simulation
- Create the model
- Compile and run the model
- Process the results

- Know the chemical equations and reaction rates!
- Create the mandatory KPP files
 - model.kpp ← This defines the model
 - model.eqn ← This contains all the chemical equations and reaction rate coefficients
 - model.spc ← This defines all the different chemical species that are used in the model
 - model.def ← This includes information for use during the simulation
- Create the model
- Compile and run the model
- Process the results

- Know the chemical equations and reaction rates!
- Create the mandatory KPP files
 - model.kpp ← This defines the model
 - model.eqn ← This contains all the chemical equations and reaction rate coefficients
 - model.spc ← This defines all the different chemical species that are used in the model
 - model.def ← This includes information for use during the simulation
- Create the model
- Compile and run the model
- Process the results

- Know the chemical equations and reaction rates!
- Create the mandatory KPP files
 - model.kpp ← This defines the model
 - model.eqn ← This contains all the chemical equations and reaction rate coefficients
 - model.spc ← This defines all the different chemical species that are used in the model
 - model.def ← This includes information for use during the simulation
- Create the model
- Compile and run the model
- Process the results

- Know the chemical equations and reaction rates!
- Create the mandatory KPP files
 - model.kpp ← This defines the model
 - model.eqn ← This contains all the chemical equations and reaction rate coefficients
 - model.spc ← This defines all the different chemical species that are used in the model
 - model.def ← This includes information for use during the simulation
- Create the model
- Compile and run the model
- Process the results

#MODEL	smog
#LANGUAGE	Fortran90
<i>#INTEGRATOR</i>	rosenbrock
#DRIVER	general

#EQUATIONS

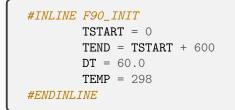
{ A Photochemical Smog Reaction Mechanism }

{ 1.}	NO2 + hv = NO + O:	0.533	;
{ 2.}	0 + 02 = 03 :	2.183E-5	;
{ 3.}	NO + O3 = NO2 + O2 :	26.59	;
{ 4.}	RH + OH = RO2 + H2O :	3.775E+3	;
{ 5.}	RCHO + OH = RCOO2 + H2O :	2.341E+4	;
{ 6.}	RCHO + hv = RO2 + HO2 + CO :	1.91E-4	;
{ 7.}	HO2 + NO = NO2 + OH :	1.214E+4	;
{ 8.}	RO2 + NO = NO2 + RCHO + HO2:	1.127E+4	;
{ 9.}	RC002 + N0 = N02 + R02 + C02:	1.127E+4	;
{ 10. }	OH + NO2 = HNO3 :	1.613E+4	;
{ 11. }	RC002 + N02 = RC002N02 :	6.893E+3	;
{12.}	RC002N02 = RC002 + N02 :	2.143E-2	;

#include atoms

#DEFVAR

0	= 0 ;	{oxygen atomic ground state (3P)}
03	= 30 ;	{ozone}
NO	= N + O ;	{nitric oxide}
		{nitrogen dioxide}
NO3	= N + 30;	{nitrogen trioxide}
N205	= 2N + 50 ;	{dinitrogen pentoxide}
HNO3	= H + N + 30;	{ nitric acid }
HNO4	= H + N + 40;	{HO2NO2 pernitric acid}
H	= H ;	{hydrogen atomic ground state (2S)}
OH	= 0 + H;	{hydroxyl radical}
H02	= H + 20 ;	{perhydroxyl radical}
H202	= 2H + 2 O ;	{hydrogen peroxide}
		{methyl radical}
		{methoxy radical}
		<pre>{methylperoxy radical}</pre>
CH3OOH	= C + 4H + 20;	{CH402 methylperoxy alcohol}
HCO		{CHO formyl radical}
CH20	= C + 2H + 0;	{formalydehyde}
RH	<pre>= ignore ;</pre>	
R02	<pre>= ignore ;</pre>	
RCHO	<pre>= ignore ;</pre>	
RC002	.	
RC002N02	<pre>= ignore ;</pre>	


#DEFFIX		
Н20	= H + 20 ;	{water}
H2	= 2H ;	{molecular hydrogen}
02	= 20 ;	{molecular oxygen}
N2	= 2N ;	{molecular nitrogen}
CH4	= C + 4H;	{methane}
CO	= C + 0 ;	{carbon monoxide}
C02	= C + 20 ;	{carbon dioxide}

```
#include smog.spc
#include smog.eqn
```

```
#LOOKATALL
#MONITOR 03;
```

```
#INITVALUES
```

```
CFACTOR = 1.;
ALL_SPEC = 1.0E-8;
RH = 2.0;
RCHO = 2.0;
NO = 0.5;
NO2 = 0.1;
H2O = 1.3E+4;
O2 = 2.0E+5;
```


- Create the model using KPP kpp smog.kpp
- compile the model

make -fMakefile_smog

Run the newly created model

./smog.exe

• Create the model using KPP

kpp smog.kpp

• compile the model

make -fMakefile_smog

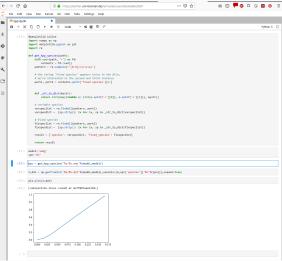
Run the newly created model

./smog.exe

• Create the model using KPP

kpp smog.kpp

• compile the model


make -fMakefile_smog

• Run the newly created model

./smog.exe

Result processing

If the run is successful, you can now start processing the results:

Thank you for your attention