Measurement Techniques in Physical Oceanography

• Topics of lecture:

Research Platforms

Instrumentation

Principles of Operation

• Literature:

R.H. Stewart Introduction to Physical Oceanography. Texas A & M University (<u>http://oceanworld.tamu.edu/home/course_book.htm</u>)

L. D. Talley, G. L. Pickard, W. J. Emery and J. H. Swift Descriptive Physical Oceanography. Academic Press. Chapter S16 Instruments and Methods (<u>http://booksite.elsevier.com/DPO/suppchapters.php</u>)

NOAA Ocean Explorer (http://oceanexplorer.noaa.gov/technology/technology.html)

W. J. Emery and R. E. Thomson Data Analysis Methods in Physical Oceanography. Elsevier (<u>http://www.sciencedirect.com/science/book/9780444507563</u>)

Research Platforms

- Research Vessels
- Moorings
- Floats and Drifters
- Autonomous Vehicles
- Remote Sensing (Satellites)

Research vessel

German research vessel Meteor

Research vessel Meteor

Length: 98 m, Speed: 12 kn, Range: 10000 nm, Scientists: 30

Research vessel

German polar research vessel *Polarstern* (breaks through 1.5 m thick ice at a speed of about 5 knots)

Research vessel

Length: 118 m, Speed: 16 kn, Scientists: 55

Measurements from research vessels

Underway measurements (moving ship)

- navigation & echo sounding (latitude, longitude, bathymetry)
- meteorology (air temperature, dew point, wind, radiation)
- sea surface temperature & salinity
- vertical profiles of current velocity (range 150 to 1200 m)
- expendable probes (temperature, conductivity, currents)

Stations (ship stopped)

- CTD (conductivity/salinity, temperature, depth + oxygen, optical backscatter, pH, etc.)
- lowered current profiler (velocity)
- water samples (salinity, oxygen, nutrients, gases, tracers, etc.)
- free falling probes (velocity, microstructure)

Shipboard acoustic Doppler current profiler (ADCP)

- range-gating of received echos
- profile from each pulse

Scatterers

(GEOMAR)

ADCP measurement principle

Narrowband (A+B)

- send ping
- ping reflected by moving particle of size 1 mm to 1 cm (e.g. plankton)
- measure Doppler frequency shift
- obtain velocity from shift as $\Delta f = f v/c$

Broadband (C+D)

- longer modulated signal (pulse); code
- change in the length of the signal (determined by autocorrelation)
- time delay yields velocity
- higher accuracy but shorter range

Shipboard ADCP measurements in the western subpolar North Atlantic

Mean velocity in averaged from 50 to 700 m

Expendable bathythermograph (XBT)

Volunteer observing ships

Stations: Water sampling carousel Niskin bottles, ADCPs and CTD

Water samples (lab analysis)

- chemical analysis (eg. oxygen, nutrients)
- electrochemical: salinity (Salinometer)
- chromatography (gases, eg. CH₄, CFCs)
- spectroscopy (noble gases, eg. ³He, Ne)

Trace Gases

CFC-12 (anthropogenic) section at 75°N across the Greenland and Norwegean Seas

Water sampling carousel with Niskin Bottles, CTD and downward looking ADCP

CTD: Conductivity, Temperature, Depth

(from Emery and Thomson, 2001)

Temperature

- pressure-protected, high-speed thermistor
- initial accuracy: ± 0.001 °C

Depth

- Digiquarz pressure sensor: quartz crystal resonator whose frequency of oscillation varies with pressure induced stress
- accuracy: 0.01% of full range (e.g. 0.6 dbar for 6000 dbar range)

Pot. Temperature, Θ (°C)

Example from the North Atlantic (47°N)

Conductivity/Salinity

In situ:

- cylindrical, flow-through, borosilicate glass cell with three internal platinum electrodes
- initial accuracy: ± 0.0003 S/m (± 0.003 mS/cm)

Density

• via equation of state from T,S,p

Conductivity cell

(from Emery and Thomson, 2001)

Salinity

Example from the North Atlantic (47°N)

Optics/Turbidity

• light transmission or optical backscatter

Example at a hydrothermal vent site from towed CTD measurements

Lowered ADCP: Velocity profiling with ADCPs

LADCP Setup

, battery case

downward looking ADCP

300 kHz Workhorse ADCP

Lowered ADCP (LADCP)

Small profiles are joined to a single surface-to-seafloor velocity profile.

Measured velocity is given by: $U_{meas}(t) = U_{ref} + U_{baroclinic}(z) - U_{instr}(t)$ Ubaroclinic is calculated from measurements $U_{baroclinic}(z) = \int \frac{\Delta U_{meas}}{\Delta z_{bin}} dz$

Reference velocity is calculated from ship's position, assuming that the ocean currents vary little during the station

$$U_{ref} = \frac{1}{T} \left(\int U_{meas} dt - \int U_{baroclinic} dt + \Delta X \right)$$
$$\Delta X = \int U_{ship} dt$$

Figure after Fischer et al., 1993

Moorings and bottom mounted equipment

- current meters & profilers
- temperature & conductivity recorders
- moored profilers
- upward looking sonars
- inverted echo sounders
- pressure gauges
- sound sources

from Emery and Thomson, 2001

Moorings: Anchor

Moorings: Acoustic release and buoyancy

B8/Tobago, 11º 21.70' N 60º 24.00' W 1100 m

Moorings: Temperature/conductivity recorder (MicroCAT)

Moorings: Acoustic current meter (RCM)

B8/Tobago, 11º 21.70' N 60º 24.00' W 1100 m Top float 74 m 78 m **MicroCAT** 88 m Nautilus 93 m RCM 195 m **MicroCAT** Nautilus 345 m **350 m** 352 m RCM **MicroCAT** 552 m **MicroCAT 752 m** 753 m Nautilus **MicroCAT** 953 m **MicroCAT** Nautilus 1054 m 1055 m **Acoustic releases** 1100 m Anchor 1200 kg

Moorings: Moored ADCP

Moored profiler

Bottom mounted ADCP

Inverted echo sounder (PIES)

Upward looking sonar (ULS)

Autonomous vehicles

- drifters (surface currents)
- floats (subsurface currents)
- profiling floats (mean currents, temperature, salinity)
- gliders
- autonomous underwater vehicles (AUVs)

Surface floats

Subsurface floats

Subsurface floats

(Bower et al., Nature, 2002)

Example from the subpolar North Atlantic: Spaghetti diagram from 223 acoustically tracked subsurface drifting floats (left) and mean streamfunction at upper level (~1000 m) derived from red tracks (right). Blue tracks from floats at Labrador Sea Water level (1500 - 1750 m).

Profiling floats

APEX (Autonomous Profiling Explorer)

Profiling floats

30 days profile data from Argo network

Temperature at 10 m from profiling floats

min = -2.19 max = 30.54 Last update : 27-Apr-2009

Salinity at 10 m from profiling floats

PSAL - 08 April 2013 - 10 m

Glider

Slocum glider (Teledyne Webb Research)

Glider

Seaglider (Univ. Washington)

Glider

Glider mission in the Labrador Sea, 24/6/06 - 29/4/05

Autonomous underwater vehicle

WHOI's Autonomous Benthic Explorer (ABE)

Remotely operated vehicles

ROV Quest 4000, MARUM, Univ. Bremen

Remote Sensing

- surface temperature
- ocean color
- surface elevation (altimetry)
- surface roughness/wind speed & direction
- wave height
- sea ice