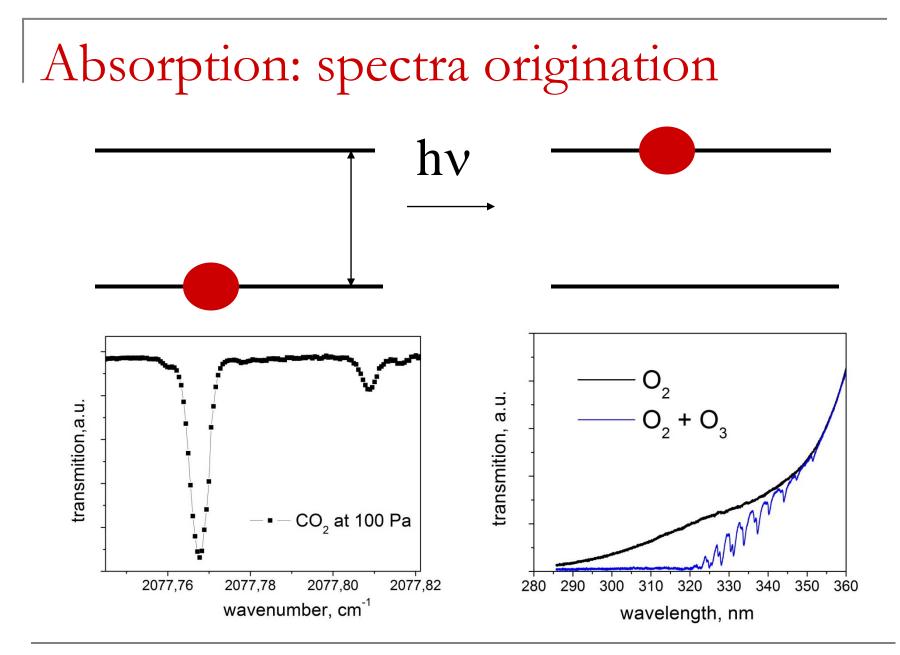


Absorption spectroscopy of atmospheric species

Anna Serdyuchenko, IUP MolSpec group

atmosphere, ocean, land, climate

Content


- Introduction
- Spectra origination
- Absorption experiment
- Beer-Lambert law
- Optical schemes and instruments

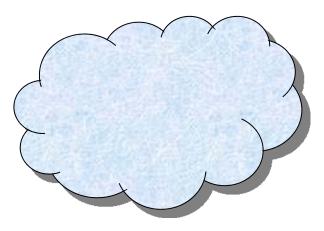
Instead of Introduction

You have 2 (two) eyes only!!!!

You need both of them!!!

SPECTRA ORIGINATION

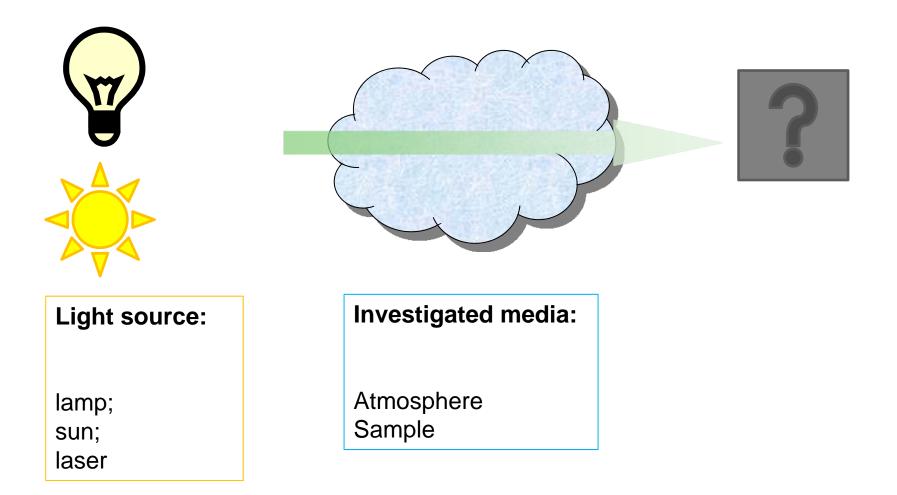
Useful conversion tool: toptica calculator

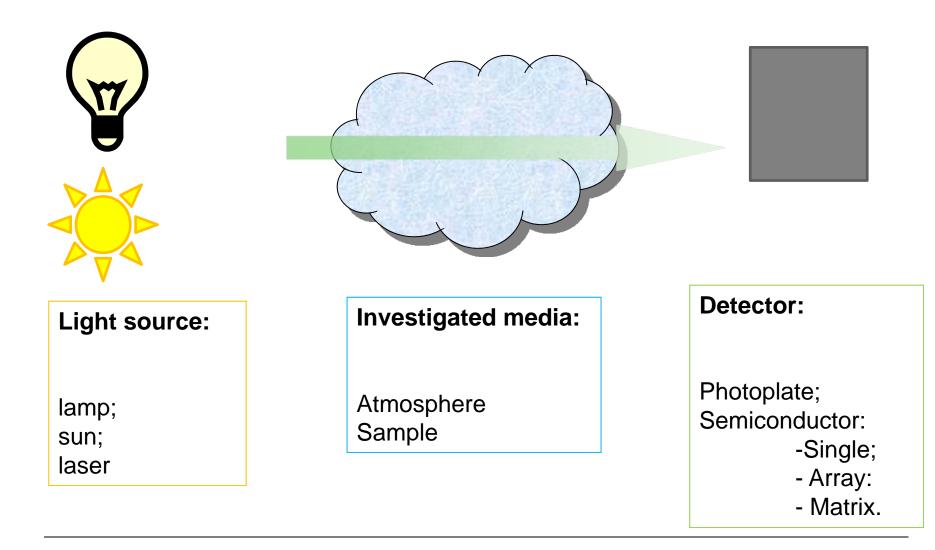

http://www.toptica.com/page/topticalc.php

spectral unit conversion × index of refraction hide info spectral position linewidth/spectral shift wavelength λ 500 nm< frequency v 599.58492 THz Δν -29.979246 GHz wavenumber κ 20000 1Hz Δν -33.35641 ps ▼ wavenumber κ 20000 1/cm Δκ -1 1/cm I=1/Δκ -10 mm Φ photon energy E 2.4796837 eV ✓ ΔΕ -0.12398419 meV ✓					
index of refract	ion hide info				
index of refraction hide info spectral position wavelength λ frequency v 599.58492 TH: wavenumber κ photon energy E 2.4796837 eV color information Did you know The world of dio frequency stable switching for you your websit	spectral position	linewidth/spectral shift			
wavelength	λ 500 nm 💌	Δλ. 0.025 nm 💌			
frequency	v 599.58492 THz ▼	Δν -29.979246 GHz 💌			
		τ=1/Δν -33.35641 ps -			
		τ=1/2πΔν -5.3088375 ps 💌			
wavenumber	ĸ 20000 1/cm.▼	<u>Δκ</u> ·1 1/cm.▼			
		l=1/Δκ -10 mm -			
photon energy	E 2.4796837 eV 💌	ΔE -0.12398419 meV 💌			
The world of diode lasers at TOPTICA: tunable, frequency stable, ideal wavefronts combined with fast switching for your applications.					
green	Visit our websites:				
index of refraction n=1 (vacuum), c=299792458 m/s					

ABSORPTION EXPERIMENT

Absorption experiment: main parts?




Investigated media:

Atmosphere Sample

Absorption experiment: main parts?

Absorption experiment: main parts?

Absorption experiment: main parts Investigated media: **Detector:** Atmosphere: Light source: a lot of species (N_2, O_2, H_2O, CO_2) Photoplate; Semiconductor: etc) at different partial pressures and temperatures scattering and -Single; Lamp; absorbing at different wavelengths. - Array: Sun; - Matrix. Laser Sample: prepared mixture at known(?) pressure and temperature

Investigated media

Atmosphere:

a lot of species (N_2 , O_2 , H_2O , CO_2 etc) at different partial pressures and temperatures scattering and absorbing at different wavelengths.

Samples:

- In the air-born or field measurements: probe of air (contains CO, CO₂ etc) collected through the special inlets
- In the laboratory: prepared mixture at known(?) pressure and temperature CH₄, CO₂ – no problem CO – dangerous, safety rules O₃ – dangerous, unstable

Investigated media: ozone

Ozone production in the laboratory: co-axial cylindrical capacitor, 'silent' discharge

Ozone generator on:

 $O_2 + e^- \rightarrow O + O + e^-$, $O_2 + O \rightarrow O_3$

Ozone generator off:

 $O_3 + M \rightarrow O_2 + O + M$, M – surrounding molecules

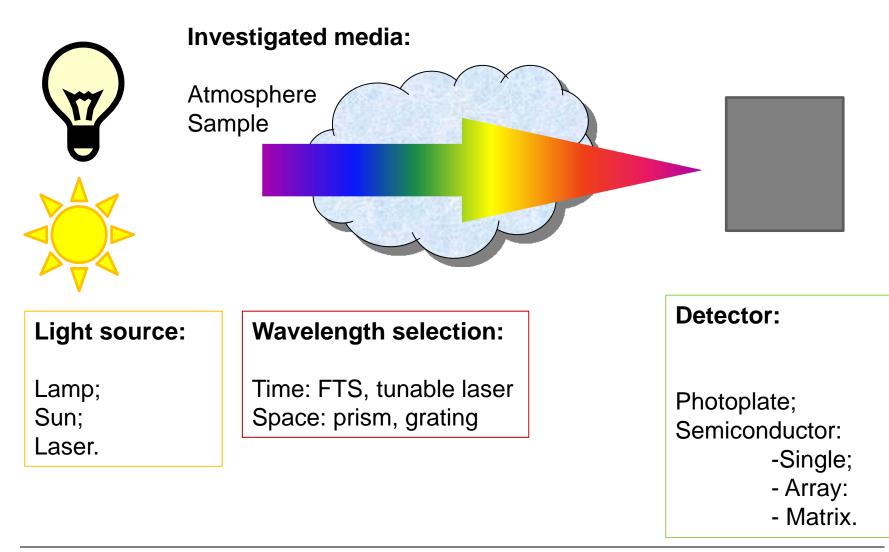
$$\frac{dn_{O3}}{dt} = -k \cdot n_M \cdot n_{O3}$$

k – decay rate [cm³/molecule/s], depends on temperature T and surrounding molecules

Why?

Investigated media: ozone

Ozone generator on


 $\begin{array}{c} \mathsf{O}_2 + \mathrm{e}^{\scriptscriptstyle -} \rightarrow \mathrm{O} + \mathrm{O} \\ \mathsf{O}_2 + \mathrm{O} \rightarrow \mathrm{O}_3 \end{array}$

Ozone generator off:

$$O_{3} + M \rightarrow O_{2} + O + M$$

$$\frac{dn_{O3}}{dt} = -k \cdot n_{M} \cdot n_{O3} \qquad n_{O3}(t) = n_{0} \cdot \exp\{-k_{decay}(T) \cdot n_{M} \cdot t\}$$

Absorption experiment: main parts

Absorption experiment: main parts

Light source:

lamp; sun; laser

Important properties:

Spectrum; Tunability; Broad- or narrowband.

Wavelength selection:

Time: FTS, tunable laser Space: prism, grating

Important properties:

Resolution; Dispersion; Transitivity/ reflectivity

Detector:

Photoplate; Semiconductor: single, array, matrix

Important properties:

Sensitivity; Response curve; Time constant; Dynamic range

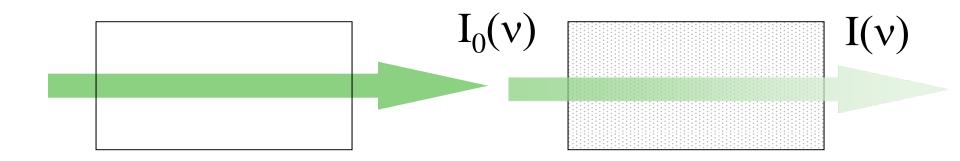
Ideal absorption experiment

Light source:

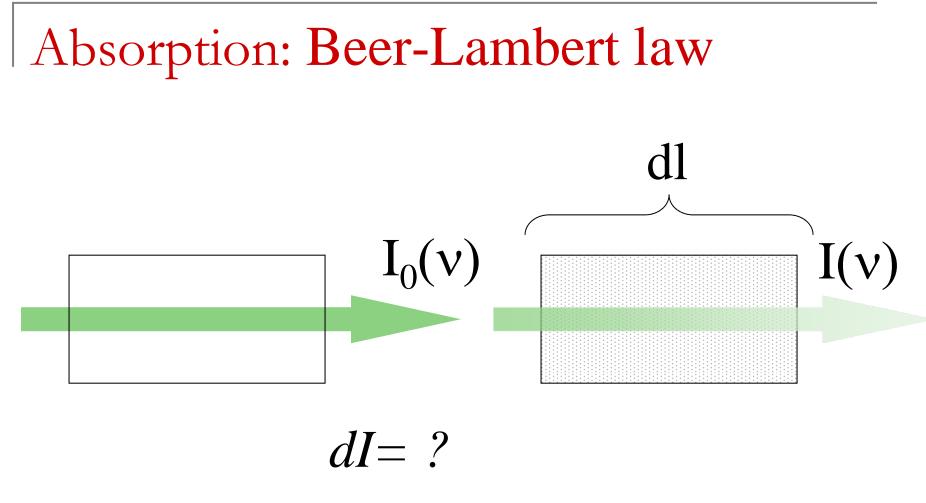
Broad or tunable Flat spectrum Stable intensity

Wavelength selection:

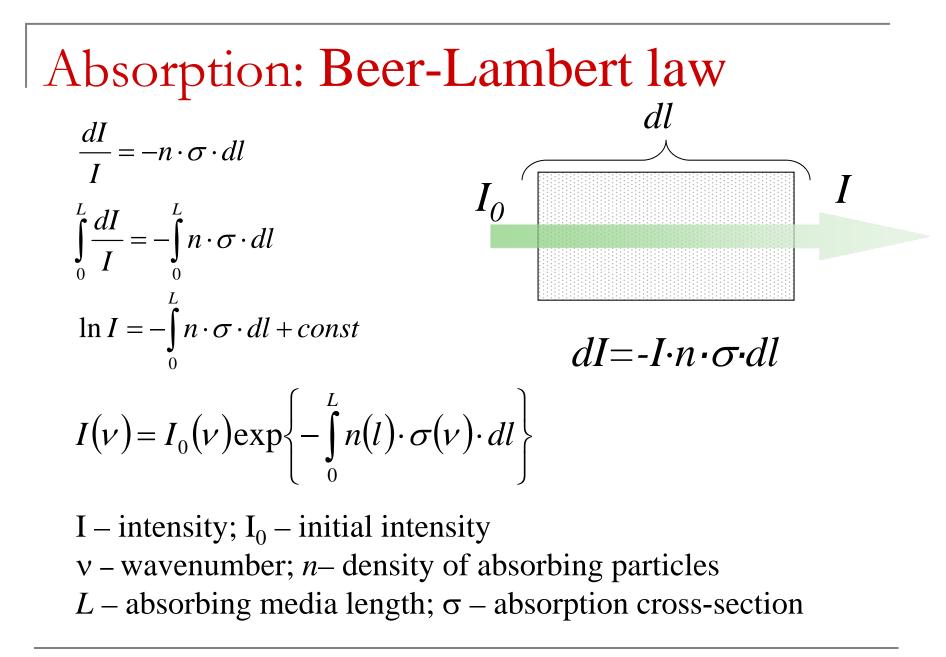
High resolution; High transmitivity/reflectivity.


Detector:

Sensitive in broad spectral range with wide dynamic range; Fast; Flat response curve; Low noise


BEER-LAMBERT LAW

Beer-Lambert law


- Beer's law = Lambert–Beer law =Beer–Lambert–Bouguer law
- relates the *absorption* of light to the *properties* of the material through which the light is travelling.

What else can happen?

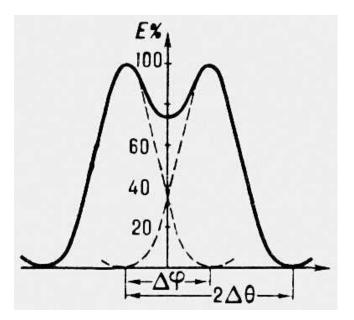
$$dI = -I \cdot n \cdot \sigma \cdot dl$$

Absorption: terms and unitsSpatial isotropic case (n, T): $I(v) = I_0(v) \exp\{-n \cdot \sigma(v) \cdot L\}$ Optical density: $OD = -\ln \frac{I(v)}{I_0(v)} = n \cdot \sigma(p, T, v) \cdot L$

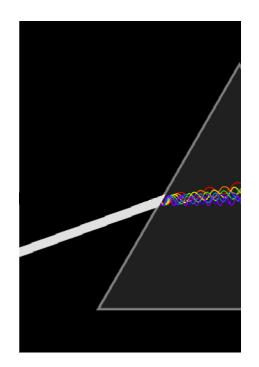
 I, I_0 – transmitted intensity with or without absorber

$v, v_0 \text{ or } \lambda$	[nm or cm ⁻¹]	wavelength or wavenumber		
n	[molecules/cm ³]	density		
L	[cm]	absorbing media length		
σ	[cm ² /molecule]	absorption cross-section		

Most important conditions:


- The absorbing medium must be *homogeneously* distributed in the interaction volume and must *not scatter* the radiation;
- The incident radiation must consist of *parallel* rays, each traversing the same length in the absorbing medium;
- The incident radiation should preferably be *monochromatic*, or have at least a width that is more narrow than the absorbing transition;
- The incident flux *must not influence* the atoms or molecules:
 - the light should not cause optical saturation or optical pumping (such effects will deplete the lower level and possibly give rise to stimulated emission).

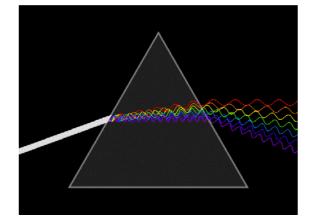
OPTICAL SCHEMES

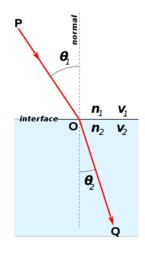

Dispersive elements

- Prism
- Diffractive grating

- Important properties:
 - Dispersion
 - Resolution
 - Response function, slit function

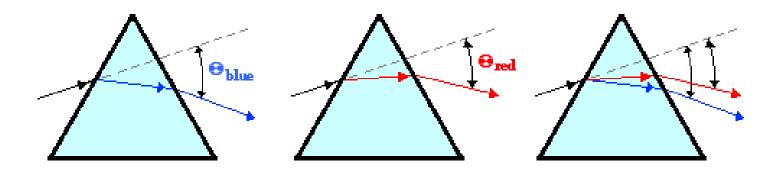
Dispersive elements: prism


Dispersive elements: prism

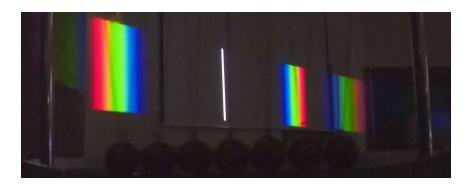

$$n = \sqrt{\varepsilon \mu}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

- $\varepsilon(\lambda)$ material's relative permittivity;
- μ relative permeability (~1 for many optical materials).



Dispersive elements: properties


- Dispersion $d\theta/d\lambda$
 - For prism angle 60° and parallel beam

$$\frac{d\theta}{d\lambda} = \frac{2}{\sqrt{4-n^2}} \frac{dn}{d\lambda}$$

- Spectral transitivity
 - Depends on material

Diffractive grating

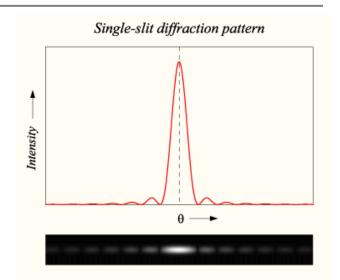
Periodic structure

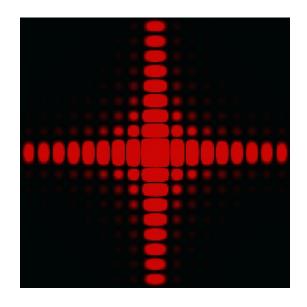
Principle of work:

1) Diffraction on every slit/stripe

2) Interference of beams created by the neighbor slits/stripes/grooves

Diffractive grating

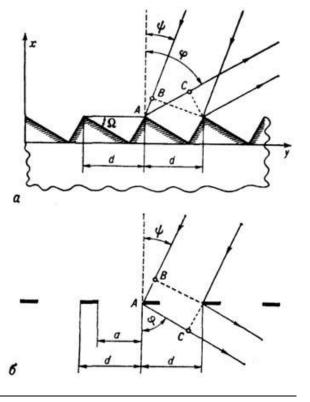

1) Diffraction on every slit/stripe


"Maximums" condition:

$$b(\sin \varphi + \sin \psi) = q \cdot \lambda$$

Distance between maximums λ/b

- d distance between slits/grooves
- *b* slit/groove width
- ψ incidence angle
- φ diffraction angle
- q number

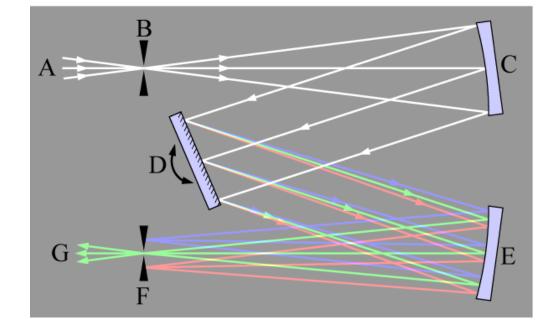


April 2011

31

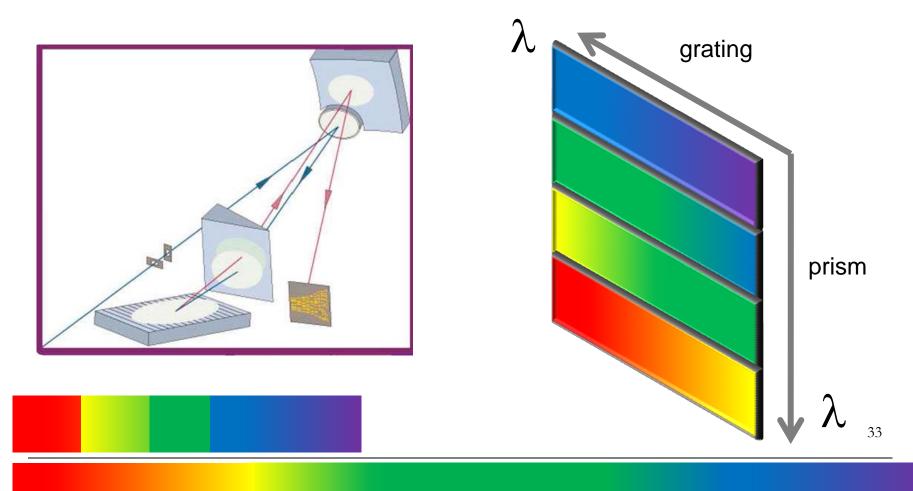
Distance between maximums λ/d

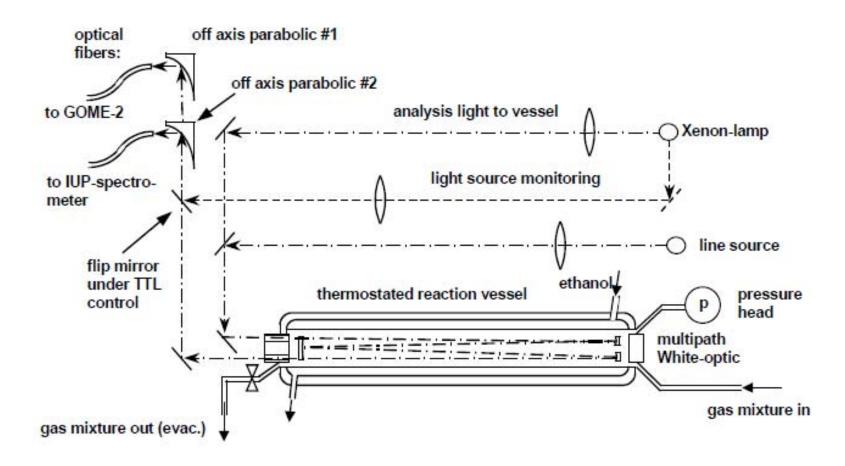
- d distance between grooves
- b-slit/groove width
- ψ incidence angle
- φ diffraction angle
- q number


2) interference of beams reflected from the neighbor slits/stripes/grooves

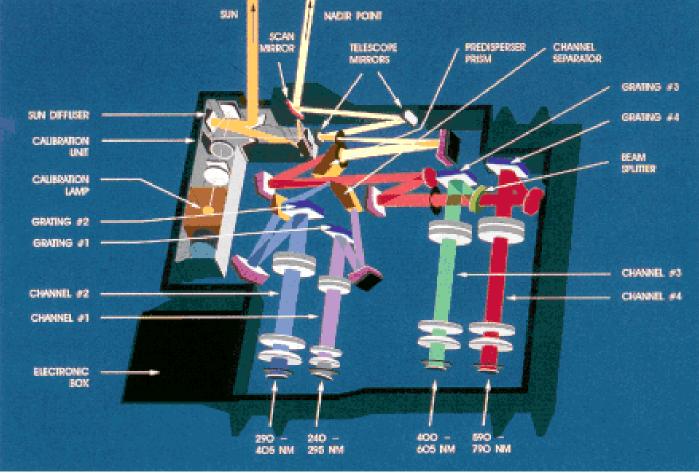
"Maximums" condition:

$$d\left(\sin \varphi + \sin \psi\right) = q \cdot \lambda$$


Dispersive elements: monochromator

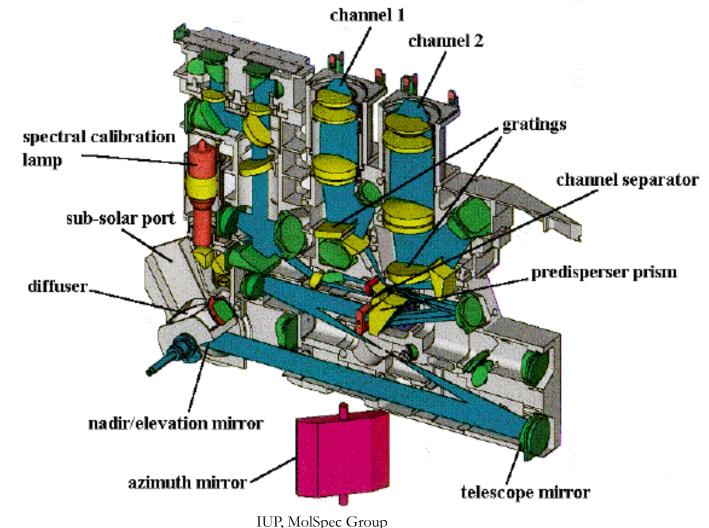

Dispersive elements: cross-dispersion

Advantages: combination of broad spectral region with high resolution



IUP, MolSpec Group

Experimental setup in the MolSpecLab



GOME: global ozone monitoring experiment

SCIAMACHY:

Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY

Satellite instruments

Contact us

۲

http://earth.esa.int/object/index.cfm?fobjectid=4004

C esa	earthne	t online	A CONTRACTOR	European Space Agence	Y
ESA Earth Home	Missions	Data Products	Resources	Applications	
				19-Apr-2011	
EO Data Access 🔹	(A)			Envisat in depth	
ESA Missions		+ Other Inst		News	
CryoSat +	EV		er Instruments + 👻	Overview	
SMOS +	ENVISA			Satellite Design	
GOCE +				Instruments	
Envisat	SCIAMACHY			SCIAMACHY in depth	
ERS +		SCIAMACHY is an imaging spectrometer whose primary mission objective is to perform global		» Design	
Proba +				» Applications	
ESA Earth Observation	56,651		» Performance		
ESA Future Missions	and the		ments of trace gases in the ere and in the stratosphere. The solar transmitted, backscattered and from the atmosphere is recorded at	» Data Products	
ESA/EUMETSAT Missions +	1.4	radiation transmitted, backs		Resources	
Third Party Missions		relatively high resolution (0.2 nm to 0.5 nm) over the range 240 nm to 1700 nm, and in selected regions between 2000 nm and 2400 nm. The high resolution and the wide wavelength range make it possible to detect many different trace gases despite low		Key Resources	
Overview +				Envisat Handbooks	
Current Missions 🔹				Access to Envisat Data (pdf - 4,32 MB)	
Historical Missions				Instruments Availability Interruptions	y
Services		concentrations (The mixing ratios of most constituents are of the order of 10-6 or less). The large wavelength range is also ideally suited for the detection of clouds and aerosols.	Satellite and Instruments status		
Site Map 🔸				Status of Envisat	
Frequently asked		Products			
Glossary +		I column values as			
Credits +		well as distribution profiles in the stratosphere and (in some cases) the troposphere for trace			
Terms of use +		gases and aerosols.			
- Contraction of the second					

Good luck!