Master of Science in Environmental Physics

Module Guide

University of Bremen Faculty 1 Physics and Electrical Engineering

October 2019

This module guide merely serves for the orientation of the students. Legally binding is the German version of the valid Examination Regulations for the M.Sc. in Environmental Physics.

We try to keep this module guide up-to-date, however, modifications with respect to personnel and content may occur.

History of changes to the module guide:

Date	Version	Changes
Oct. 2019	Winter Semester 2019/2020	 new module plan cancelled compulsory courses: Soil Physics
April 2019	Summer Semester 2019	 new optional courses: Fortran for Environmental Sciences Isotopes in Environmental Physics Practical Physical Oceanography several assignments for MSc Technomathematik + MSc Marine Geosciences deleted
Nov. 2018	Winter Semester 2018/2019	 update course numbers cancelled optional courses: Cloud Physics Environmental Radioactivity several courses assigned to MSc Prozessorientierte Materialforschung (ProMat)
March 2018	Summer Semester 2018	new optional course: Atmospheric Chemistry Modelling: Part 2 (Laboratory)
Jan. 2018	Winter Semester 2017/2018	 new course numbers new order sorted by module sections and in alphabetical order within the module sections changes of course titles: old: Aerosol and Radiative Aspects in Clouds / new: Atmospheric Aerosols old: Atmospheric Chemistry II / new: Biogeochemistry old: Molecular Physics / new: Atmospheric Spectroscopy new optional courses: Atmospheric Chemistry Modeling: Part 1 Climate Modelling: Part 1 Climate Modelling: Part 2 Ice Mass Balance and Remote Sensing
March 2017	Summer Semester 2017	2 lecturers changed
Dec. 2016	Winter Semester 2016/2017	 module guide in English only cancelled optional courses: Physics of Polar Ice Core Records The Upper Atmosphere new optional courses: Practical Data Analysis with Python

Nov. 2015	Winter Semester 2014/2015	 module guide in German + English description per individual course Atmospheric Chemistry II: Change from compulsory module to optional module
Nov. 2013	Winter Semester 2013/2014	 module guide in German only description per general modules 1 – 7 each including a list of the appendant courses

Contents

Overview / Module Plan	5
Module Section 1: Basics	
(Compulsory Modules) / 22 CP	6
Atmospheric Chemistry I	6
Atmospheric Physics	7
Climate System I	9
Physical Oceanography	10
Module Section 2: Theoretical Basics	
(Compulsory Modules) / 16 CP	11
Dynamics I	11
Dynamics II	12
Inverse Methods and Data Analysis	13
Module Section 3: Experimental Techniques	
(Compulsory Modules) / 10 CP	14
Measurement Techniques	14
Remote Sensing I	15
Module Section 4: Advanced Environmental Physics	
(Elective Modules / "Special Topics") / 21 CP	16
Atmospheric Aerosols	16
Atmospheric Chemistry Modelling: Part 1 (Theory)	17
Atmospheric Chemistry Modelling: Part 2 (Laboratory)	18
Atmospheric Spectroscopy	19
Biogeochemistry	20
Chemistry and Dynamics of the Ozone Layer	21
Climate II	22
Climate Modelling: Part 1	23
Climate Modelling: Part 2	24
Digital Image Processing	25
Fortran for Environmental Sciences	26
General Meteorology	27
Global Carbon Cycle	28
Ice Mass Balance and Remote Sensing	29
Instrumental Techniques for Environmental Measurements	30
Isotopes in Environmental Physics	31

Mathematical Modelling	32
Microwave Remote Sensing	33
Ocean Optics and Ocean Color Remote Sensing	35
Physical Oceanography II	37
Polar Oceanography	38
Practical Data Analysis with Python	39
Practical Physical Oceanography	41
Statistics and Error Analysis	42

Module Section 5: Research in Environmental Physics (Compulsory Modules) / 21 CP Proseminar on Presentation Techniques in Environmental Physics

Proseminar on Presentation Techniques in Environmental Physics	43
Preparatory Project (Vorbereitungsprojekt)	44

Module 6 / Module Master Thesis

(Compulsory Module) / 30 CP	45
Master's Thesis	45

43

Overview + Module Plan M.Sc. Environmental Physics

Semester	Compulsory M	Iodules + Module Master Thes	is (99 CP)	Elective Modules (21 CP)	CP/Sem.
1	Atmospheric Physics (6 CP)	Physical Oceanography (6 CP)	Atmospheric Chemistry I (6 CP)		30
	Inverse Methods and Data Analysis (6 CP)	Dynamics I (6 CP)			
2	Climate System I (4 CP)	Dynamics II (4 CP)	Remote Sensing I (4 CP)	Special Topics (12 CP)	30
	Measurements Techniques (6 CP)				
3	Proseminar on Presentation Techniques in Environmental Physics(3 CP)	Preparatory Project (18 CP)		Special Topics (9 CP)	30
4	Master's Thesis (30 CP)				30

Abbreviations:

CP	Credit points	EC	Example classes
h	Hours	L	Lecture
SWH	Semester weekly hours	Lab	Laboratory
		PS	Proseminar

Remarks:

Partial examination: Credit points for a module are granted upon successful examination performance and successful course performance. Module examination: Credit points are granted upon a) successful assessment of the thesis paper as the final product of the preparatory project and b) successful assessment of the master's thesis incl. colloquium.

Examination performances are graded.

Course performances are not graded.

Module Section 1: Basics

Code no.	01-01-03-AtC1
Module title	Atmospheric Chemistry I
Responsible for the module, lecturers /	PD Dr. Annette Ladstätter-Weißenmayer / Prof. Dr. Mihalis Vrekoussis Module section 1 / Basics
module assignment	Module section 17 basics
Assignment to study	Compulsory for MSc Environmental Physics
programmes	Optional compulsory for MSc Physik
Semester weekly hours (SWH)	4 SWH / 2x lecture (L) + 2x example classes (EC)
Workload /	6 CP, 180 h
credit points	 presence (L + EC): 56 h (4 SWH x 14 weeks) preparation, learning + examples: 56 h (4 SWH x 14 weeks) preparation for exam: 68 h
Offered frequency	Annually / winter semester
Duration / semester	1 semester / winter semester (1st academic year)
Course language	English
Compulsory / optional	Compulsory
Requirements for participation	No formal requirements
Content	History of the atmospheres of the earth; atmospheric composition; thermodynamics, thermochemistry and chemical equilibria; photochemistry; kinetic theory of reactions and reaction rate coefficients; chain reactions; atmospheric chemical mechanisms and transformations in the thermosphere, mesosphere, stratosphere and the troposphere.
Learning outcome	Basics chemistry of the atmosphere
Course and examination performance, type of exam	Partial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respective lecturer
Literature	 John H. Seinfeld, Spyros N. Pandis Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 3rd Edition Finlayson-Pitts B. J. and J. N. Pitts, Atmospheric Chemistry Ann M. Holloway and Richard P. Wayne, Atmospheric Chemistry, RSC Publishing, 2010 John M. Wallace and Peter V. Hobbs Atmospheric Science (Second Edition): An Introductory Survey

Code no.	01-01-03-AtPhy
Module title	Atmospheric Physics
Responsible for the	Prof. Dr. John P. Burrows
module, lecturers /	Module section 1 / Basics
module assignment	
Assignment to study	Compulsory for MSc Environmental Physics
programmes	Compulsory for MSc Space Sciences and Technologies
programmes	
	Compulsory for MSc Space Engineering II
	Optional compulsory for MSc Physik
	Optional compulsory for MSc Physical Geography: Environmental History
O anno a tao anno a bhu h a anno	
Semester weekly hours	4 SWH / 2x lecture (L) + 2x example classes (EC)
(SWH)	
Workload /	6 CP, 180 h
credit points	 presence (L + EC): 56 h (4 SWH x 14 weeks)
	 preparation, learning + examples: 56 h (4 SWH x 14 weeks)
	 preparation for exam: 68 h
Offered frequency	Annually / winter semester
Duration / semester	1 semester / winter semester (1st academic year)
Course language	English
Compulsory / optional	Compulsory
Requirements for	No formal requirements
participation	
Content	The origin of the solar system and the earth's atmosphere; the evolving
	atmospheric composition; the physical parameters determining conditions in
	the atmosphere (e.g. temperature, pressure, and vorticity); the laws
	describing electromagnetic radiation; the interaction between
	electromagnetic radiation and matter (absorption emission and scattering);
	atmospheric radiative transport; radiation balance, climate change;
	atmospheric thermodynamics and hydrological cycle; aerosols and cloud
	physics; an introduction into atmospheric dynamics (kinematics, circulation
	etc.)
Learning outcome	An adequate understanding of the fundamentals of atmospheric physics.
	This addresses a) gaining an understanding the laws of physics, which
	determine the behaviour of the earth system comprising the sun the
	atmosphere and earth surface, b) learning the ability to apply the laws of
	physics to calculate parameters and forecast conditions in the atmosphere.
	This knowledge is required for subsequent advanced courses in the M.Sc.
	programmes. In later life, these learning outcomes are essential for
	undertaking a) research in atmospheric, environmental and climate science
	Earth observation and remote sensing form ground based ship, aircraft and
	space based instrumentation, b) being employment in earth observation,
	earth science, meteorology, industry, or governmental and space agencies.

Course and examination performance, type of exam	Partial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respective lecturer
Literature	 Houghton, J.T., The physics of atmospheres, Cambridge University Press, 1977, ISBN 0 521 29656 0 Wallace, John M. and Peter V. Hobbs, Atmospheric Science, An Introductory Survey, Academic Press, 2nd Edition 2005, ISBN 0-12- 732951-x

	01-01-03-CliS1		
Code no.			
Module title	Climate System I		
Responsible for the	Prof. Dr. Torsten Kanzow		
module, lecturers /	Module section 1 / Basics		
module assignment			
Assignment to study	Compulsory for MSc Environmental Physics		
programmes	Optional compulsory for MSc Physik		
	Optional compulsory for MSc Marine Geosciences		
Semester weekly hours (SWH)	3 SWH / 2x lecture (L) + 1x example classes (EC)		
Workload /	4 CP, 120 h		
credit points	 presence (L + EC): 42 h (3 SWH x 14 weeks) 		
	 preparation, learning + examples: 42 h (3 SWH x 14 weeks) 		
	 preparation for exam: 36 h 		
Offered frequency	Annually / summer semester		
Duration / semester	1 semester / summer semester (1st academic year)		
Course language	English		
Compulsory / optional	Compulsory		
Requirements for participation	No formal requirements		
Content	Climate on earth / climate variations / the climate system / energy balance models / radiation & convection / role of the ocean in climate		
Learning outcome	Climate physics		
Course and examination Partial exam			
performance, type of	Examination performance: Written exam/oral exam (will be announced by		
exam	the respective lecturer)		
	Course performance: Successful particiation in the tutorials (this requires		
	reaching at least 50% (of maximum number of points) in the assignments) or		
	as announced by the respective lecturer		
Literature	Will be announced in the respective course.		

Code no.	01-01-03-PhyO
Module title	Physical Oceanography
Responsible for the	Prof. Dr. Monika Rhein / Dr. Reiner Steinfeldt / Dr. Oliver Huhn
module, lecturers / module assignment	Module section 1 / Basics
Assignment to study	Compulsory for MSc Environmental Physics
programmes	Optional compulsory for MSc Physik
	Optional compulsory for MSc Marine Geosciences
Semester weekly hours (SWH)	4 SWH / 2x lecture (L) + 2x example classes (EC)
Workload /	6 CP, 180 h
credit points	 presence (L + EC): 56 h (4 SWH x 14 weeks)
	 preparation, learning + examples: 56 h (4 SWH x 14 weeks)
	 preparation for exam: 68 h
Offered frequency	Annually / winter semester
Duration / semester	1 semester / winter semester (1st academic year)
Course language	English
Compulsory / optional	Compulsory
Requirements for participation	No formal requirements
Content	External forcing (radiation, winds, tides), global distribution of important dynamic and physical parameters, water mass formation, wind-driven 3D circulation, geostrophy, meridional overturning, role of ocean in climate change
Learning outcome	Understand fundamentals of physical oceanography
Course and examination	Partial exam
performance, type of	Examination performance: Written exam/oral exam (will be announced by
exam	the respective lecturer)
	Course performance: Successful assessment of example classes or as announced by the respective lecturer
Literature	Will be announced in the respective course.

Module Section 2: Theoretical Basics

Oc do no	
Code no.	01-01-03-Dyn1
Module title	Dynamics I
Responsible for the	Prof. Dr. Thomas Jung
module, lecturers /	Module section 2 / Theoretical Basics
module assignment	
Assignment to study	Compulsory for MSc Environmental Physics
programmes	Optional compulsory for MSc Physik
programmee	Optional for MSc Space Sciences and Technologies
Semester weekly hours	4 SWH / 2x lecture (L) + 2x example classes (EC)
(SWH)	
Workload /	6 CP, 180 h
credit points	
credit points	 presence (L + EC): 56 h (4 SWH x 14 weeks)
	• preparation, learning + examples: 56 h (4 SWH x 14 weeks)
	preparation for exam: 68 h
Offered frequency	Annually / winter semester
Duration / semester	1 semester / winter semester (1st academic year)
Course language	English
Compulsory / optional	Compulsory
Deminente fen	No ferre el recevieren ente
Requirements for	No formal requirements
participation	Occurring equations have a second stimulated belower allower terms
Content	Governing equations, basic conservation laws, balances, elementary
	applications of the basic equations, circulation and vorticity, planetary
	boundary layer, Rossby waves
	Linderstanding of the basis dynamical processes in strategy bars and second
Learning outcome	Understanding of the basic dynamical processes in atmosphere and ocean;
	learning how to interpret physical equations physically
Course and examination	Partial exam
performance, type of	Examination performance: Written exam/oral exam (will be announced by
exam	the respective lecturer)
	Course performance: Successful assessment of example classes (active
	engagement in the example classes including (two times) the successful
	presentation of solutions at the blackboard) or as announced by the
	respective lecturer
Literature	Holton, An Introduction to Dynamic Meteorology, Elsevier Academic
	Press
	Marshall and Plumb: Atmosphere, Ocean, and Climate Dynamics, An
	Introductory Text, Academic Press, 2008
	• Wallace and Hobbs, Atmospheric Science: An Introductory Survey,
	Academic Press
	1

Code no.	01-01-03-Dyn2
Module title	Dynamics II
Responsible for the	Prof. Dr. Gerrit Lohmann
module, lecturers /	Module section 2 / Theoretical Basics
module assignment	
	Computer for MCo Environmental Dhusico
Assignment to study	Compulsory for MSc Environmental Physics
programmes	Optional compulsory for MSc Physik
Semester weekly hours	3 SWH / 2x lecture (L) + 1x example classes (EC)
(SWH)	
Workload /	4 CP, 120 h
credit points	 presence (L + EC): 42 h (3 SWH x 14 weeks)
	 preparation, learning + examples: 42 h (3 SWH x 14 weeks)
	 preparation for exam: 36 h
Offered frequency	Annually / summer semester
Duration / semester	1 semester / summer semester (1st academic year)
Course language	English
Compulsory / optional	Compulsory
compuisory / optional	Compusory
-	
Requirements for participation	No formal requirements
Content	Fluid dynamics, ocean circulation, wind-driven and thermohaline circulation;
ooment	atmosphere dynamics and teleconnections, dynamical system theory, non-
	dimensional parameters, bifurcations and instabilities; gravity, Rossby,
	Kelvin waves; Simple models, Stochastic climate model; Analytical and
	Programming techniques; Fourier and Laplace transformation; Time series
	analysis
	,
Learning outcome	Advanced dynamics of the ocean and atmosphere, applications in the fields
Learning outcome	
	of climate dynamics and fluid mechanics. Programming skills (R studio) and
	usage of the climate data operators. Theoretical concepts in physics of
	climate, temporal and spatial scales of climate dynamics
Course and examination	Partial exam
performance, type of	Examination performance: Written exam/oral exam (will be announced by
	the respective lecturer)
exam	
	Course performance: Successful assessment of example classes or as
	announced by the respective lecturer
Literature	Holton, J.R., Introduction to Dynamical Meteorology, Academic Press
	Gill, A., Atmosphere-Ocean Dynamics, Academic Press
	 Dutton, J.A., The Ceaseless Wind, Dover
	 Olbers, D.J., et al., Ocean Dynamics, Springer
	 Cushman-Roisin, B. & Beckers, JM., Introduction to Geophysical Fluid
	Dynamics: Physical and Numerical Aspects
	 Marchal, J., and R. A. Plumb, 2008. Atmosphere, Ocean and Climate
	Dynamics: An Introductory Text. Academic Press, 344 pp; videos
	 Stewart, R. H., 2008: Introduction To Physical Oceanography
	 Lohmann, G., 2014: Ocean Fluid Dynamics: Concepts, Scaling and
	Multiple Equilibria.

Code no.	01-01-03-IMDA
Module title	Inverse Methods and Data Analysis
	inverse methous and Data Analysis
Responsible for the	Prof. Dr. Reiner Schlitzer
<u>module</u> , lecturers / module assignment	Module section 2 / Theoretical Basics
Assignment to study	Compulsory for MSc Environmental Physics
programmes	Compulsory for MSc Space Sciences and Technologies
	Compulsory for MSc Space Engineering II Optional compulsory for MSc Physik
	Optional compulsory for MSc Marine Geosciences
Semester weekly hours (SWH)	4 SWH / 2x lecture (L) + 2x example classes (EC)
Workload / credit points	6 CP, 180 h
crean points	 presence (L + EC): 56 h (4 SWH x 14 weeks) preparation, learning + examples: 56 h (4 SWH x 14 weeks)
	 preparation for exam: 68 h
Offered frequency	Annually / winter semester
Duration / semester	1 semester / winter semester (1st academic year)
Course language	English
Compulsory / optional	Compulsory
Requirements for participation	No formal requirements
Content	Error analysis and statistics, techniques for the optimal solution of under and
	over determined systems of linear equations including methods for
	calculating variances and covariances of the solutions, concepts of resolution and methods to calculate them, practical examples and
	applications to test data sets from oceanography, image processing and
	remote sensing of the atmosphere, earth, outer space, and celestial bodies.
Learning outcome	Introduction to linear inverse methods
Course and examination	Partial exam
performance, type of	Examination performance: Written exam/oral exam (will be announced by
exam	the respective lecturer) Course performance: Successful assessment of example classes or as
	announced by the respective lecturer
Literature	Will be announced in the respective course.

Module Section 3: Experimental Techniques

Code no.	01-01-03-MeTe
Module title	Measurement Techniques
Responsible for the	Dr. Andreas Richter / Dr. Christian Mertens
<u>module</u> , lecturers /	Module section 3 / Experimental Techniques
module assignment	
Assignment to study programmes	Compulsory for MSc Environmental Physics
Semester weekly hours (SWH)	4 laboratory (Lab) + 1 lecture (L)
Workload /	6 CP, 180 h
credit points	 presence (L): 18 h (6 SWH x 3 weeks)
	 presence (Lab): 24 h (6 SWH x 4 weeks)
	 preparation, report: 84 h (12 SWH x 7 weeks)
	 preparation for exam: 54 h
Offered frequency	Annually / summer semester
Duration / semester	1 semester / summer semester (1st academic year)
Course language	English
Compulsory / optional	Compulsory
Requirements for participation	No formal requirements
Content	A set of practical measurements of meteorological quantities, atmospheric trace gases, ocean currents, environmental radioactivity, and absorption cross-sections using different techniques is performed by the students under supervision of tutors. The measurements obtained in the lab will then be analysed and the experiment, its background and the results as well as their interpretation be documented in a written report.
Learning outcome	Participants will perform measurements in Environmental Physics using scientific techniques and methods. They learn to analyse the measurements and to document the results in a written report.
Course and examination	Partial exam
performance, type of exam	Examination performance: Oral exam Course performance: Successful experiments with accepted reports
Literature	Will be announced in the respective course.

Code no.	01-01-03-RemS1
Module title	Remote Sensing I
Responsible for the module, lecturers / module assignment	Prof. Dr. Astrid Bracher / Dr. Mathias Palm Module section 3 / Experimental Techniques
Assignment to study programmes	Compulsory for MSc Environmental Physics Optional compulsory for MSc Physik Optional compulsory for MSc Prozessorientierte Materialforschung Optional compulsory for MSc Marine Geosciences Optional compulsory for MSc Physical Geography: Environmental History
Semester weekly hours (SWH)	3 SWH / 2x lecture (L) + 1x example classes (EC)
Workload / credit points	 4 CP, 120 h presence (L + EC): 31,5 h (2,25 SWH x 14 weeks) preparation for rapport: 13,5 h preparation and re-analysing examples: 45 h (4,5 SWH x 10 weeks) preparation for exam: 30 h
Offered frequency	Annually / summer semester
Duration / semester	1 semester / summer semester (1st academic year)
Course language	English
Compulsory / optional	Compulsory
Requirements for participation	No formal requirements
Content	The course introduces the theoretical background of remote sensing methods (interaction of electromagnetic radiation with matter (spectroscopy), radiative transfer, principles of satellite remote sensing). Mostly passive (thermal emission, backscattered light) but also Active (radar used in sea ice) remote sensing techniques and their data analysis (retrievals) are explained. This is illustrated by a large number of examples available and in use in the different research groups in the Institute of Environmental Physics (IUP).
Learning outcome	Basics of radiative transfer, spectroscopy, retrieval techniques. Overview of remote sensing from satellite, ground and airborne platforms in MW, IR and UV-VIS spectral range. Techniques in atmospheric remote sensing, sea ice remote sensing, ocean color remote sensing
Course and examination performance, type of exam	Partial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes (oral rapport of 5-10 min. summarizing one of the lectures, exercises and a total of 70 points need to be reached in 10 exercises with 10 points each) or as announced by the respective lecturer
Literature	Will be announced in the respective course.

Module Section 4: Advanced Environmental Physics

Cadana	04 04 02 444
Code no.	01-01-03-AtA
Module title	Atmospheric Aerosols
Responsible for the	Dr. Marco Vountas / Dr. Linlu Mei / Dr. Nikos Daskalakis
module, lecturers /	Module section 4 / Advanced Environmental Physics
module assignment	
Assignment to study	Optional for MSc Environmental Physics
programmes	Optional compulsory for MSc Space Sciences and Technologies
	Optional compulsory for MSc Physik
Semester weekly hours (SWH)	2 SWH / 1,5x lecture (L) + 0,5x example classes (EC)
Workload /	3 CP, 90 h
credit points	 presence (L + EC): 28 h (2 SWH x 14 weeks)
	 preparation, learning + examples: 28 h (2 SWH x 14 weeks)
	 preparation for exam: 34 h
Offered frequency	Annually / winter semester
Duration / semester	1 semester / winter semester
Course language	English
Compulsory / optional	Optional
Requirements for participation	No formal requirements
Content	Description of atmospheric aerosols, their composition and measuring methods. Introduction to radiative transfer in the troposphere with emphasis on aerosols and clouds
Learning outcome	Advanced knowledge of the atmosphere and light scattering
Course and examination	Partial exam
performance, type of	Examination performance: Written exam/oral exam (will be announced by
exam	the respective lecturer)
	Course performance: Successful assessment of example classes or as announced by the respective lecturer
Literature	Will be announced in the respective course.

Code no.	01-01-03-AtCM1
Module title	Atmospheric Chemistry Modelling: Part 1 (Theory)
Responsible for the module, lecturers / module assignment	Prof. Dr. Mihalis Vrekoussis / Dr. Nikos Daskalakis Module section 4 / Advanced Environmental Physics
Assignment to study programmes	Optional for MSc Environmental Physics Optional compulsory for MSc Space Sciences and Technologies
Semester weekly hours (SWH)	2 SWH / 1,5x lecture (L) + 0,5x example classes (EC)
Workload / credit points	 3 CP, 90 h presence (L + EC): 28 h (2 SWH x 14 weeks) preparation, learning + examples: 42 h (3 SWH x 14 weeks) preparation for exam: 20 h
Offered frequency	Annually / winter semester
Duration / semester	1 semester / winter semester
Course language	English
Compulsory / optional	Optional
Requirements for participation	No formal requirements
Content	 Concept of chemistry transport models Atmospheric Chemical Composition/Processes Model equations and numerical approaches focusing on the: a) formulation of atmospheric rates b) numerical methods for chemical systems Surface fluxes/emissions Observations and model evaluations Inverse modeling for atmospheric chemistry
Learning outcome	Participants will have the chance to: Get a theoretical overview of the concepts of numerical atmospheric chemistry modelling, to review fundamentals of atmospheric chemistry and physics, to formulate model equations and numerical (differential) approaches for various systems focusing on atmospheric chemistry mechanisms and to assess the role of chemistry transport models as components of the atmospheric observing system. Concepts of inverse modelling will be also presented.
Course and examination performance, type of exam	Partial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes and/or successful writing of an essay and/or successful presentation of a given topic or as announced by the respective lecturer
Literature	Will be announced in the respective course.

Code no.	01-01-03-AtCM2
Module title	Atmospheric Chemistry Modelling: Part 2 (Laboratory)
Responsible for the module, lecturers / module assignment	Dr. Nikos Daskalakis Module section 4 / Advanced Environmental Physics
Assignment to study programmes	Optional for MSc Environmental Physics
Semester weekly hours (SWH)	2 SWH / 1x lecture (L) + 1x example classes (EC)
Workload / credit points	 3 CP, 90 h presence (L + EC): 28 h (2 SWH x 14 weeks) preparation, learning + examples: 42 h (3 SWH x 14 weeks) preparation for exam: 20 h
Offered frequency	Annually / summer semester
Duration / semester	1 semester / summer semester
Course language	English
Compulsory / optional	Optional
Requirements for participation	No formal requirements
Content	 introduction to the moguntia model explanation input files manipulation and analysis of results study of interhemispheric transports study the budget of simulated CO simulate the growth of CO₂ mixing ratios simulate the concentrations of methyl chloroform simulate the methyl-chloroform/OH constrains
Learning outcome	Participants will have the chance to: Have a hands-on experience on how atmospheric chemistry models work, prepare the input needed by a model, run the model and process the output of the model in order to come to scientific conclusions
Course and examination performance, type of exam	Partial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes and/or successful writing of an essay or as announced by the respective lecturer
Literature	Will be announced in the respective course.

Module title Atmospheric Spectroscopy Responsible for the module assignment Prof. Dr. Justus Notholt Module section 4 / Advanced Environmental Physics Assignment to study programmes Optional for MSc Environmental Physics Compulsory for MSc Space Sciences and Technologies Semester weekly hours (SWH) 2 SWH / 1,5x lecture (L) + 0,5x example classes (EC) Workload / credit points 3 CP, 90 h • preparation, learning + examples: 28 h (2 SWH x 14 weeks) • preparation, learning + examples: 28 h (2 SWH x 14 weeks) • preparation for exam: 34 h Offered frequency Annually / summer semester Duration / semester 1 semester / summer semester Course language English Compulsory / optional Optional Prism and grating spectrometers, Fourier-Transform-Spectroscopy, transitions, rotational spectra, vibrational spectra, rotational-vibrational spectra, remote sensing methods Learning outcome Basics of spectroscopy, basics of molecular spectroscopy. Understanding and interpretation of measured spectra with regard to the structure of the molecules. Basics of prism, grating and FTIR-spectroscopy, understanding and interpretation of measured spectra with regard to the structure of the molecules. Basics of prism, grating and FTIR-spectroscopy, understanding and interpretation of measured spectra with regard to the struc	Code no.	01-01-03-AtSp
Responsible for the module, lecturers / module, lecturers / module, ecturers / module, section 4 / Advanced Environmental Physics Assignment to study programmes Optional for MSc Environmental Physics Semester weekly hours 2 SWH / 1,5x lecture (L) + 0,5x example classes (EC) (SWH) 3 CP, 90 h credit points 3 CP, 90 h or preparation, learning + examples: 28 h (2 SWH x 14 weeks) or preparation, learning + examples: 28 h (2 SWH x 14 weeks) or preparation for exam: 34 h Offered frequency Annually / summer semester Duration / semester 1 semester / summer semester Compulsory / optional Optional Requirements for participation Prism and grating spectrometers, Fourier-Transform-Spectroscopy, transitions, rotational spectra, vibrational spectra, rotational spectra, orbit on frequence of the molecules. Basics of prism, grating and FTIR-spectroscopy, understanding of remote sensing methods. Learning outcome Partial exam Examination performance, type of exam Partial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respectiv		
module, lecturers / module assignmentModule section 4 / Advanced Environmental PhysicsModule assignmentOptional for MSc Environmental Physics Compulsory for MSc Space Sciences and TechnologiesSemester weekly hours (SWH)2 SWH / 1,5x lecture (L) + 0,5x example classes (EC)Workload / credit points3 CP, 90 h • presence (L + EC): 28 h (2 SWH x 14 weeks) • preparation, learning + examples: 28 h (2 SWH x 14 weeks) • preparation for exam: 34 hOffered frequency Duration / semester1 semester / summer semesterDuration / semester1 semester / summer semesterCourse language ParticipationOptionalRequirements for participationNo formal requirements participationContent ContentPrism and grating spectrometers, Fourier-Transform-Spectroscopy, transitions, rotational spectra, vibrational spectra, rotational-vibrational spectra, remote sensing methodsLearning outcomeBasics of spectroscopy, basics of molecular spectroscopy, understanding and interpretation of measured spectra with regard to the structure of the molecules. Basics of prism, grating and FTIR-spectroscopy, understanding of remote sensing methods.Course and examination performance, type of examPartial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respective lecturer	Module title	Atmospheric Spectroscopy
module assignment Optional for MSc Environmental Physics Compulsory for MSc Space Sciences and Technologies Semester weekly hours (SWH) 2 SWH / 1,5x lecture (L) + 0,5x example classes (EC) Workload / credit points 3 CP, 90 h • presence (L + EC): 28 h (2 SWH x 14 weeks) • preparation, learning + examples: 28 h (2 SWH x 14 weeks) • preparation for exam: 34 h Offered frequency Annually / summer semester Duration / semester 1 semester / summer semester Compulsory / optional Requirements for participation Prism and grating spectrometers, Fourier-Transform-Spectroscopy, transitions, rotational spectra, vibrational spectra, rotational-vibrational spectra, remote sensing methods Learning outcome Basics of spectroscopy, basics of molecular spectroscopy, understanding and interpretation of measured spectra with regard to the structure of the molecules. Basics of prism, grating and FTIR-spectroscopy, understanding and interpretation of measured spectra with regard to the structure of the molecules. Basics of prism, grating and FTIR-spectroscopy, understanding and interpretation performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respective lecturer		
Assignment to study programmes Optional for MSc Environmental Physics Compulsory for MSc Space Sciences and Technologies Semester weekly hours (SWH) 2 SWH / 1,5x lecture (L) + 0,5x example classes (EC) Workload / credit points 3 CP, 90 h • presence (L + EC): 28 h (2 SWH x 14 weeks) • preparation, learning + examples: 28 h (2 SWH x 14 weeks) • preparation for exam: 34 h Offered frequency Annually / summer semester Duration / semester 1 semester / summer semester Course language English Compulsory / optional Optional requirements participation Prism and grating spectrometers, Fourier-Transform-Spectroscopy, transitions, rotational spectra, vibrational spectra, rotational-vibrational spectra, remote sensing methods Learning outcome Basics of spectroscopy, basics of molecular spectroscopy, understanding and interpretation of measured spectra with regard to the structure of the molecules. Basics of prism, grating and FTIR-spectroscopy, understanding of remote sensing methods. Course and examination performance, type of exam Partial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respective lecturer		Module section 4 / Advanced Environmental Physics
programmesCompulsory for MSc Space Sciences and TechnologiesSemester weekly hours (SWH)2 SWH / 1,5x lecture (L) + 0,5x example classes (EC)Workload / credit points3 CP, 90 h • presence (L + EC): 28 h (2 SWH x 14 weeks) • preparation, learning + examples: 28 h (2 SWH x 14 weeks) • preparation for exam: 34 hOffered frequencyAnnually / summer semesterDuration / semester1 semester / summer semesterCourse languageEnglishCompulsory / optionalOptionalRequirements for participationNo formal requirementsPrism and grating spectrometers, Fourier-Transform-Spectroscopy, transitions, rotational spectra, vibrational spectra, rotational- vibrational spectra, remote sensing methodsLearning outcomeBasics of spectroscopy, basics of molecular spectroscopy. Understanding and interpretation of measured spectra with regard to the structure of the molecules. Basics of prism, grating and FTIR-spectroscopy, understanding of remote sensing methods.Course and examination performance, type of examPartial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respective lecturer		
Semester weekly hours (SWH) 2 SWH / 1,5x lecture (L) + 0,5x example classes (EC) Workload / credit points 3 CP, 90 h • presence (L + EC): 28 h (2 SWH x 14 weeks) • preparation, learning + examples: 28 h (2 SWH x 14 weeks) • preparation for exam: 34 h Offered frequency Annually / summer semester Duration / semester 1 semester / summer semester Course language English Compulsory / optional Optional Requirements for participation Prism and grating spectrometers, Fourier-Transform-Spectroscopy, transitions, rotational spectra, vibrational spectra, rotational-vibrational spectra, remote sensing methods Learning outcome Basics of spectroscopy, basics of molecular spectroscopy. Understanding and interpretation of measured spectra with regard to the structure of the molecules. Basics of prism, grating and FTIR-spectroscopy, understanding of remote sensing methods. Course and examination performance, type of exam Partial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respective lecturer		
(SWH) 3 CP, 90 h credit points 3 CP, 90 h presence (L + EC): 28 h (2 SWH x 14 weeks) preparation, learning + examples: 28 h (2 SWH x 14 weeks) preparation for exam: 34 h Offered frequency Annually / summer semester Duration / semester 1 semester / summer semester Course language English Compulsory / optional Optional Requirements for participation Prism and grating spectrometers, Fourier-Transform-Spectroscopy, transitions, rotational spectra, vibrational spectra, rotational-vibrational spectra, rotational spectra, rotational-vibrational spectra, rotational spectra, with regard to the structure of the molecules. Basics of prism, grating and FTIR-spectroscopy. Understanding and interpretation of measured spectra with regard to the structure of the molecules. Basics of prism, grating and FTIR-spectroscopy, understanding of remote sensing methods. Course and examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance, type of examination performance: Successful assessment of example classes or as announced by the respective lecturer	programmes	Compulsory for MSc Space Sciences and Technologies
credit points• presence (L + EC): 28 h (2 SWH x 14 weeks) • preparation, learning + examples: 28 h (2 SWH x 14 weeks) • preparation for exam: 34 hOffered frequencyAnnually / summer semesterDuration / semester1 semester / summer semesterCourse languageEnglishCompulsory / optionalOptionalRequirements for participationNo formal requirements Prism and grating spectrometers, Fourier-Transform-Spectroscopy, transitions, rotational spectra, vibrational spectra, rotational-vibrational spectra, remote sensing methodsLearning outcomeBasics of spectroscopy, basics of molecular spectroscopy, understanding of remote sensing methods.Course and examination performance, type of examPartial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respective lecturer	(SWH)	
 preparation, learning + examples: 28 h (2 SWH x 14 weeks) preparation for exam: 34 h Offered frequency Annually / summer semester Duration / semester 1 semester / summer semester Course language English Compulsory / optional Optional Requirements for participation Prism and grating spectrometers, Fourier-Transform-Spectroscopy, transitions, rotational spectra, vibrational spectra, rotational-vibrational spectra, remote sensing methods Learning outcome Basics of spectroscopy, basics of molecular spectroscopy. Understanding and interpretation of measured spectra with regard to the structure of the molecules. Basics of prism, grating and FTIR-spectroscopy, understanding of remote sensing methods. Course and examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respective lecturer 		
Preparation for exam: 34 h Offered frequency Annually / summer semester Duration / semester 1 semester / summer semester Course language English Compulsory / optional Optional Requirements for participation Prism and grating spectrometers, Fourier-Transform-Spectroscopy, transitions, rotational spectra, vibrational spectra, rotational-vibrational spectra, remote sensing methods Learning outcome Basics of spectroscopy, basics of molecular spectroscopy. Understanding and interpretation of measured spectra with regard to the structure of the molecules. Basics of prism, grating and FTIR-spectroscopy, understanding of remote sensing methods. Course and examination performance, type of exam Partial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respective lecturer	credit points	
Offered frequencyAnnually / summer semesterDuration / semester1 semester / summer semesterCourse languageEnglishCompulsory / optionalOptionalRequirements for participationNo formal requirementsPrism and grating spectrometers, Fourier-Transform-Spectroscopy, transitions, rotational spectra, vibrational spectra, rotational-vibrational spectra, remote sensing methodsLearning outcomeBasics of spectroscopy, basics of molecular spectroscopy, understanding and interpretation of measured spectra with regard to the structure of the molecules. Basics of prism, grating and FTIR-spectroscopy, understanding of remote sensing methods.Course and examination performance, type of examPartial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respective lecturer		
Duration / semester1 semester / summer semesterCourse languageEnglishCompulsory / optionalOptionalRequirements for participationNo formal requirementsContentPrism and grating spectrometers, Fourier-Transform-Spectroscopy, transitions, rotational spectra, vibrational spectra, rotational-vibrational spectra, remote sensing methodsLearning outcomeBasics of spectroscopy, basics of molecular spectroscopy. Understanding 		 preparation for exam: 34 h
Duration / semester1 semester / summer semesterCourse languageEnglishCompulsory / optionalOptionalRequirements for participationNo formal requirementsContentPrism and grating spectrometers, Fourier-Transform-Spectroscopy, transitions, rotational spectra, vibrational spectra, rotational-vibrational spectra, remote sensing methodsLearning outcomeBasics of spectroscopy, basics of molecular spectroscopy. Understanding and interpretation of measured spectra with regard to the structure of the molecules. Basics of prism, grating and FTIR-spectroscopy, understanding of remote sensing methods.Course and examination performance, type of examPartial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respective lecturer		
Course languageEnglishCompulsory / optionalOptionalRequirements for participationNo formal requirementsContentPrism and grating spectrometers, Fourier-Transform-Spectroscopy, transitions, rotational spectra, vibrational spectra, rotational-vibrational spectra, remote sensing methodsLearning outcomeBasics of spectroscopy, basics of molecular spectroscopy. Understanding and interpretation of measured spectra with regard to the structure of the molecules. Basics of prism, grating and FTIR-spectroscopy, understanding of remote sensing methods.Course and examination performance, type of examPartial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respective lecturer	Offered frequency	Annually / summer semester
Compulsory / optionalOptionalRequirements for participationNo formal requirementsContentPrism and grating spectrometers, Fourier-Transform-Spectroscopy, transitions, rotational spectra, vibrational spectra, rotational-vibrational spectra, remote sensing methodsLearning outcomeBasics of spectroscopy, basics of molecular spectroscopy. Understanding and interpretation of measured spectra with regard to the structure of the molecules. Basics of prism, grating and FTIR-spectroscopy, understanding of remote sensing methods.Course and examination performance, type of examPartial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respective lecturer	Duration / semester	1 semester / summer semester
Requirements for participationNo formal requirementsContentPrism and grating spectrometers, Fourier-Transform-Spectroscopy, transitions, rotational spectra, vibrational spectra, rotational-vibrational spectra, remote sensing methodsLearning outcomeBasics of spectroscopy, basics of molecular spectroscopy. Understanding and interpretation of measured spectra with regard to the structure of the molecules. Basics of prism, grating and FTIR-spectroscopy, understanding of remote sensing methods.Course and examination performance, type of examPartial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respective lecturer		English
participationContentPrism and grating spectrometers, Fourier-Transform-Spectroscopy, transitions, rotational spectra, vibrational spectra, rotational-vibrational spectra, remote sensing methodsLearning outcomeBasics of spectroscopy, basics of molecular spectroscopy. Understanding and interpretation of measured spectra with regard to the structure of the molecules. Basics of prism, grating and FTIR-spectroscopy, understanding of remote sensing methods.Course and examination performance, type of examPartial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respective lecturer	Compulsory / optional	Optional
Learning outcomeBasics of spectroscopy, basics of molecular spectroscopy. Understanding and interpretation of measured spectra with regard to the structure of the molecules. Basics of prism, grating and FTIR-spectroscopy, understanding of remote sensing methods.Course and examination performance, type of examPartial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respective lecturer		No formal requirements
Course and examination performance, type of examPartial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respective lecturer	Content	transitions, rotational spectra, vibrational spectra, rotational-vibrational
performance, type of examExamination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respective lecturer	Learning outcome	and interpretation of measured spectra with regard to the structure of the molecules. Basics of prism, grating and FTIR-spectroscopy, understanding
Literature Will be announced in the respective course.	performance, type of	Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as
	Literature	Will be announced in the respective course.

Code no.	01-01-03-BGC
Module title	Biogeochemistry
Responsible for the	PD Dr. Annette Ladstätter-Weißenmayer
module, lecturers / module assignment	Module section 4 / Advanced Environmental Physics
Assignment to study	Optional for MSc Environmental Physics
programmes	Optional compulsory for MSc Physik
	Optional for MSc Space Sciences and Technologies
Semester weekly hours (SWH)	2 SWH / 1x lecture (L) + 1x example classes (EC)
Workload /	3 CP, 90 h
credit points	 presence (L + EC): 28 h (2 SWH x 14 weeks)
	 preparation, learning + examples: 28 h (2 SWH x 14 weeks)
	 preparation for exam: 34 h
Offered frequency	Annually / summer semester
Duration / semester	1 semester / summer semester
Course language	English
Compulsory / optional	Optional
Requirements for participation	No formal requirements
Content	Global biochemical cycles of elements, important biophysical processes in atmosphere and ocean, carbon-, methane-, nitrogen and water cycle, greenhouse gases
Learning outcome	Advanced biogeochemistry
Course and examination	Partial exam
performance, type of	Examination performance: Written exam/oral exam (will be announced by
exam	the respective lecturer)
	Course performance: Successful assessment of example classes and/or
	successful writing of an essay and/or successful presentation of a defined topic or as announced by the respective lecturer
Literature	Will be announced in the respective course.

Code no.	01-01-03-CDOL
Code no.	01-01-03-CDOE
Module title	Chemistry and Dynamics of the Ozone Layer
Responsible for the	PD Dr. Björn-Martin Sinnhuber
module, lecturers /	Module section 4 / Advanced Environmental Physics
module assignment	
Assignment to study programmes	Optional for MSc Environmental Physics
Semester weekly hours (SWH)	Block course (corresponding to 2 SWH)
Workload /	3 CP, 90 h
credit points	 presence (L + EC): 40 h (block course 5 days)
	 preparation, learning + examples: 25 h
	preparation for exam: 25 h
Offered frequency	Annually / winter semester
Duration / semester	1 semester / winter semester
Course language	English
Compulsory / optional	Optional
Requirements for participation	No formal requirements
Content	Dynamics and chemistry of the ozone layer, implementation of a numerical
	model of the ozone layer and model based analyses
	The ozone layer and its role in the climate system
	Introduction to scientific programming (with practical exercises)
	Atmospheric chemistry modeling (with practical exerises)
	3()
Learning outcome	Further understanding of chemistry-climate-interactions, skills in scientific
J III	computer programming
Course and examination	Partial exam
performance, type of	Examination performance: Written exam/oral exam (will be announced by
exam	the respective lecturer)
	Course performance: Successful assessment of example classes or as
	announced by the respective lecturer
Literature	No particular literature needed, recommended reading will be announced in
	the course.

Code no.	
Code no.	01-01-03-Cli2
Module title	Climate II
Responsible for the	Prof. Dr. Gerrit Lohmann / Dr. Martin Werner
module, lecturers /	Module section 4 / Advanced Environmental Physics
module assignment	
Assignment to study	Optional for MSc Environmental Physics
programmes	
Semester weekly hours	2 SWH / 1,5x lecture (L) + 0,5x example classes (EC)
(SWH)	
Workload /	3 CP, 90 h
credit points	 presence (L + EC): 28 h (2 SWH x 14 weeks)
	• preparation, learning + examples: 42 h (3 SWH x 14 weeks)
	preparation for exam: 20 h
Offered frequency	Annually / winter semester
Duration / semester	1 semester / winter semester
Course language	English
Compulsory / optional	Optional
Requirements for participation	No formal requirements
Content	Climate models, possibilities and limitations to observe climate change, ice ages and orbital variations, Holocene, glacial-interglacial variability; Cenozoic climate, abrupt climate change; climate scenarios, sea level, environmental archives, palaeoclimate data, biogeochemical cycles, feedbacks; Spectra and time series analysis; Modes of variability
Learning outcome	Advanced climate course: Theories, models, observations. Past-present-future climate changes
Course and examination	Partial exam
performance, type of	Examination performance: Written exam/oral exam (will be announced by
exam	the respective lecturer)
	Course performance: Successful assessment of example classes and/or
	successful writing of an essay or as announced by the respective lecturer
Literature	 Bradley, Paleoclimatology-Reconstructing climates of the Quaternary, 1999
	Saltzman, Dynamical Paleoclimatology - A generalized theory of global
	climate change, Academic Press, San Diego, 2002
	 Ruddiman, Earth's Climate Past and Future
	• Paleoclimate, Global Change and the Future, 2003 by Keith D. Alverson,
	Raymond S. Bradley, Thomas F. Pedersen (Editors)
	Broecker, THE GLACIAL WORLD ACCORDING TO WALLY

Code no.	01-01-03-CliM1
Module title	Climate Modelling: Part 1
Responsible for the module, lecturers /	Prof. Dr. Veronika Eyring Module section 4 / Advanced Environmental Physics
module assignment	
Assignment to study programmes	Optional for MSc Environmental Physics Optional compulsory for MSc Physik
programmes	Optional for MSc Space Sciences and Technologies
Semester weekly hours (SWH)	Block course (corresponding to 2 SWH)
Workload /	3 CP, 90 h
credit points	 presence (L + EC): 28 h (block course 5 days) preparation, learning + examples: 42 h
	 preparation for exam: 20 h
Offered frequency	Annually / summer semester
Duration / semester	1 semester / summer semester
Course language	English
Compulsory / optional	Optional
Requirements for participation	No formal requirements
Content	Types of Climate Models Energy Balance Models
	Radiative-Convective Models
	Components of Atmosphere Ocean General Circulation Models (GCMs) Fundamentals and representation in GCMs: atmospheric component
	Fundamentals and representation in GCMs: atmospheric component
	Fundamentals and representation in GCMs: terrestrial component
	Steps in Model Formulation Introduction to the Coupled Model Intercomparison Project (CMIP)
	Results from GCMs: Climate change and climate warming
	Climate model evaluation with observations
	Frequently Asked Questions IPCC Assessment Reports Computational exercises with simple climate models
	Computation exercises in Python
Learning outcome	Understanding simple climate models and General Circulation Models
	(GCMs), their results and limitations; basics in Python.
Course and examination	Partial exam
performance, type of exam	Examination performance: Written exam/oral exam (will be announced by the respective lecturer)
	Course performance: Successful assessment of example classes and/or successful writing of an essay or as announced by the respective lecturer
Literature	Will be announced in the respective course.
	1

Code no.	01-01-03-CliM2
Module title	Climate Modelling: Part 2
Responsible for the	Prof. Dr. Veronika Eyring
module, lecturers / module assignment	Module section 4 / Advanced Environmental Physics
Assignment to study	Optional for MSc Environmental Physics
programmes	Optional compulsory for MSc Physik
Semester weekly hours (SWH)	Block Course (corresponding to 2 SWH)
Workload /	3 CP, 90 h
credit points	 presence (L + EC): 28 h (block course 5 days)
	 preparation, learning + examples: 42 h preparation for exam: 20 h
Offered frequency	Annually / winter semester
Duration / semester	1 semester / winter semester
Course language	English
Compulsory / optional	Optional
Requirements for participation	Climate Modelling: Part 1
Content	Components of Earth System Models (ESMs)
	Fundamentals and representation in ESMs: carbon cycle
	Fundamentals and representation in ESMs: atmospheric chemistry Fundamentals and representation in ESMs: aerosols
	Earth system feedbacks and projections
	Decadal climate predictions
	Detection and attribution of climate change
	Earth system model evaluation with observations
	Climate informatics Results from ESMs
	Computational exercises with the Earth System Model Evaluation Tool
	(ESMValTool, http://www.esmvaltool.org/) and interpretation of ESM results
Learning outcome	Understanding Earth System Models (ESMs), their results and limitations,
	computational skills in the analysis of ESM output.
Course and examination	Partial exam
performance, type of	Examination performance: Written exam/oral exam (will be announced by
exam	the respective lecturer)
	Course performance: Successful assessment of example classes and/or successful writing of an essay or as announced by the respective lecturer
Literature	Will be announced in the respective course.
	1

Code no.	01-01-03-DIP
Module title	Digital Image Processing
Responsible for the module, lecturers / module assignment	Dr. Christian Melsheimer / Dr. Gunnar Spreen Module section 4 / Advanced Environmental Physics
Assignment to study programmes	Optional for MSc Environmental Physics Compulsory for MSc Space Sciences and Technologies Optional compulsory for MSc Prozessorientierte Materialforschung
Semester weekly hours (SWH)	2 SWH / 1,5x lecture (L) + 0,5x example classes (EC)
Workload / credit points	 3 CP, 90 h presence (L + EC): 28 h (2 SWH x 14 weeks) preparation, learning + examples: 28 h (2 SWH x 14 weeks) preparation for exam: 34 h
Offered frequency	Annually / summer semester
Duration / semester	1 semester / summer semester
Course language	English
Compulsory / optional	Optional
Requirements for participation	No formal requirements
Content	 Digital images, sampling Grey level transformations, color images Image enhancement using filters Image analysis methods using segmentation, feature extraction and classification Fourier transformation of digital images, linear filters in spatial and frequency domains Data compression, image coding, image formats
Learning outcome	Fundamentals, basic concept and methods of digital image processing, enabling the students to identify and understand image processing problems (encountered in Environmental Physics, Space Science etc.) and to find appropriate solutions
Course and examination performance, type of exam	Partial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respective lecturer
Literature	 K. R. Castleman: Digital Image Processing. Prentice Hall, Englewood Cliffs, 1996. R. C. Gonzalez, R. E. Woods: Digital Image Processing. Addison- Wesley, Second Edition, 2002. B. Jähne: Digital Image Processing. Springer, 2002. J.C. Russ: The Image Processing Handbook, 5th Edision. CRC Press, 2006 (ISBN 0-8493-7254-2). R. A. Schowengerdt: Remote Sensing, Models and Methods for Image Processing. Academic Press, 1997.

Code no.	01-01-03-FES
Module title	Fortran for Environmental Sciences
Responsible for the	Dr. Nikos Daskalakis
<u>module</u> , lecturers / module assignment	Module section 4 / Advanced Environmental Physics
Assignment to study programmes	Optional for MSc Environmental Physics
Semester weekly hours (SWH)	2 SWH / 1x lecture (L) + 1x example classes (EC)
Workload /	3 CP, 90 h
credit points	 presence (L + EC): 28 h (2 SWH x 14 weeks)
	 preparation, learning + examples: 42 h (3 SWH x 14 weeks) preparation for exam: 20 h
Offered frequency	Annually / summer semester
Duration / semester	1 semester / summer semester
Course language	English
Compulsory / optional	Optional
Requirements for participation	No formal requirements
Content	Introduction to programming languages and differences between
	compiled/interpreted languages
	Flow charts and their use in coding
	Structure of a serial FORTRAN code Implicitly variables intrinsis functions
	Implicitly, variables, intrinsic functionsInput/output of a program
	 Loops in coding and their use
	 Logical statements
	Subroutines
	READ-WRITE-PRINT-FORMAT
Learning outcome	Participants will have the chance to:
	Learn the basic structure and rules of FORTRAN and apply this knowledge in computing complex environmentally relevant systems.
Course and examination	Partial exam
performance, type of	Examination performance: Written exam/oral exam (will be announced by
exam	the respective lecturer) / Successful assessment of an environmental
	problem using programming Course performance: Successful assessment of example classes and/or successful writing of an essay or as announced by the respective lecturer
Literature	Will be announced in the respective course.

Code no.	01-01-03-GenM
Module title	General Meteorology
Responsible for the module, lecturers / module assignment	Dr. Anne-Marlene Blechschmidt Module section 4 / Advanced Environmental Physics
Assignment to study programmes	Optional for MSc Environmental Physics Optional compulsory for MSc Physik
Semester weekly hours (SWH)	2 SWH / 1x lecture (L) + 1x example classes (EC)
Workload / credit points	 3 CP, 90 h presence (L + EC): 28 h (2 SWH x 14 weeks) preparation, learning + examples: 28 h (2 SWH x 14 weeks) preparation for exam: 34 h
Offered frequency	Annually / summer semester
Duration / semester	1 semester / summer semester
Course language	English
Compulsory / optional	Optional
Requirements for participation	No formal requirements
Content	Typical flow patterns of the atmosphere, static (in-)stability, circulation systems, mid-latitude cyclones.
Learning outcome	Fundamentals of general meteorology.
Course and examination performance, type of exam	Partial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes and/or successful writing of an essay or as announced by the respective lecturer
Literature	Will be announced in the respective course.

Code no.	01-01-03-GCC
Module title	Clabal Carbon Cycla
	Global Carbon Cycle
Responsible for the	Dr. Christoph Völker
<u>module</u> , lecturers / module assignment	Module section 4 / Advanced Environmental Physics
Assignment to study	Optional for MSc Environmental Physics
programmes	Optional compulsory for MSc Physik
	Optional compulsory for MSc Prozessorientierte Materialforschung Optional compulsory for MSc Marine Geosciences
	Optional compulsory for MSc Physical Geography: Environmental History
Semester weekly hours (SWH)	2 SWH / 1,5x lecture (L) + 0,5x example classes (EC)
Workload /	3 CP, 90 h
credit points	 presence (L + EC): 28 h (2 SWH x 14 weeks) preparation, learning + examples: 28 h (2 SWH x 14 weeks)
	 preparation for exam: 34 h
Offered frequency	Annually / winter semester
Duration / semester	1 semester / winter semester
Course language	English
Compulsory / optional	Optional
Requirements for participation	No formal requirements
Content	 Working of the natural and anthropogenic greenhouse effect Existence and magnitude of the different reservoirs of carbon in the earth system, and their role on different climatic time-scales role of carbon in the chemistry of the ocean and in setting its pH changes in the carbon cycle over glacial-interglacial cycles carbon isotopes as tool to understand the cycling of carbon influence of weathering and volcanism on the carbon cycle over geological time-scales
Learning outcome	Knowledge of the different carbon reservoirs on earth, and their role on different timescales, from current to geological. Understanding that the cycling of carbon between those reservoirs is related to global climate by a number of feedbacks.
Course and examination performance, type of exam	Partial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes and/or successful writing of an essay or as announced by the respective lecturer
Literature	 Principles of Planetary Climate: Raymond Pierrehumbert Ocean Biogeochemical Dynamics: Jorge L. Sarmiento & Nicolas Gruber Earth's Climate: Past and Future: William F. Ruddiman

Code no.	01-01-03-IMBRS
Module title	Ice Mass Balance and Remote Sensing
Responsible for the module, lecturers / module assignment	Prof. Dr. Christian Haas Module section 4 / Advanced Environmental Physics
Assignment to study programmes	Optional for MSc Environmental Physics
Semester weekly hours (SWH)	Block/Field course (corresponding to 2 SWH)
Workload / credit points	 3 CP, 90 h presence (L + EC): 80 h (field course 48 h + data processing/analysis 32 h) final report: 10 h
Offered frequency	Annually / summer semester
Duration / semester	1 semester / summer semester
Course language	English
Compulsory / optional	Optional
Requirements for participation	 No formal requirements Fitness for mountain hikes of 4-5 hours and 1000 m elevation gain, with heavy backpack. Some experience with outdoor activities in exposed rock and ice alpine environment
Content	 Glacier mass balance Measurements of radiation balance Snow pit studies of snow properties Oxygen isotope analysis of snow Optical and radar remote sensing of glaciers
Learning outcome	Surface mass balance and remote sensing of ice and snow
Course and examination performance, type of exam	Partial exam Examination performance: Preparation of final report Course performance: Data processing and analysis
Literature	 Cuffey&Patterson, Physics of Glaciers, 2010 Bamber&Payne, Mass Balance of the Cryosphere, 2004 Lubin&Massom, Polar Remote Sensing, 2006 http://glaziologie.de/vernagt/vernagt.html More will be announced in the respective course.

Code no.	01-01-03-ITE
Module title	Instrumental Techniques for Environmental Measurements
	instrumental rechniques for Environmental Measurements
Responsible for the	Prof. Dr. Mihalis Vrekoussis
<u>module</u> , lecturers / module assignment	Module section 4 / Advanced Environmental Physics
Assignment to study	Optional for MSc Environmental Physics
programmes	Optional compulsory for MSc Physik
	Optional compulsory for MSc Prozessorientierte Materialforschung
Semester weekly hours (SWH)	2 SWH / 1x lecture (L) + 1x example classes (EC)
Workload /	3 CP, 90 h
credit points	 presence (L + EC): 28 h (2 SWH x 14 weeks) preparation, learning + examples: 28 h (2 SWH x 14 weeks)
	 preparation, learning + examples. 20 n (2 SWTX 14 weeks) preparation for exam: 34 h
Offered frequency	Annually / summer semester
Duration / semester	1 semester / summer semester
Course language	English
Compulsory / optional	Optional
Requirements for participation	No formal requirements
Content	Theoretical aspects on analytical methods including spectroscopic and chromatographic techniques. Introduction to the principle of operation and
	design of instruments used in environmental analysis.
Learning outcome	Students are expected to enhance their knowledge on the theoretical
	aspects, design and operation of a number of instruments used in environmental analysis. Ultimately, students will improve their analytical
	thinking by recognizing and understanding the advantages and
	disadvantages of the environmental instrumental methods to be used
	depending on the material under investigation.
Course and examination	Partial exam
performance, type of	Examination performance: Written exam/oral exam (will be announced by
exam	the respective lecturer) Course performance: Successful assessment of example classes and/or
	successful writing of an essay or as announced by the respective lecturer
Literature	Quantitative chemical analysis, 9 th edition, (Daniel. C. Harris)

Code no.	01-01-03-IEPhy
Module title	Isotopes in Environmental Physics
Responsible for the	PD Dr. Thorsten Warneke
<u>module</u> , lecturers /	Module section 4 / Advanced Environmental Physics
module assignment	Noule sector +/ Advanced Environmental Physics
Assignment to study	Optional for MSc Environmental Physics
programmes	Optional compulsory for MSc Physical Geography: Environmental History
Semester weekly hours (SWH)	2 SWH / 1x lecture (L) + 1x example classes (EC)
Workload /	3 CP, 90 h
credit points	 presence (L + EC): 28 h (2 SWH x 14 weeks)
	 preparation, learning + examples: 28 h (2 SWH x 14 weeks)
	 preparation for exam: 34 h
Offered frequency	Annually / summer semester
Duration / semester	1 semester / summer semester
Course language	English
Compulsory / optional	Optional
Requirements for participation	No formal requirements
Content	Stable and radioactive isotopes, Isotopic fractionation: Processes and
	examples for their occurence in the environment, Radioactive decay and
	emitted radiation, Measurements of isotopic composition, Examples for the use of isotopes (Source characterization, Paleoclimatology)
Learning outcome	Understanding isotopic fractionation, radiactive decay and the use of isotopes in paleoclimatology and for source characterization
Course and examination	Partial exam
performance, type of	Examination performance: Written exam/oral exam (will be announced by
exam	the respective lecturer)
	Course performance: Successful assessment of example classes and/or successful giving a presentation or as announced by the respective lecturer
Literature	Will be announced in the respective course.

Code no.	01-01-03-MaMo
Module title	Mathematical Modelling
	Mathematical Modelling
Responsible for the	Dr. Silke Thoms
<u>module</u> , lecturers / module assignment	Module section 4 / Advanced Environmental Physics
Assignment to study	Optional for MSc Environmental Physics
programmes	Optional compulsory for MSc Prozessorientierte Materialforschung Optional compulsory for MSc Marine Geosciences
Semester weekly hours (SWH)	2 SWH / 1x lecture (L) + 1x example classes (EC)
Workload /	3 CP, 90 h
credit points	 presence (L + EC): 28 h (2 SWH x 14 weeks) preparation, learning + examples: 28 h (2 SWH x 14 weeks)
	 preparation for exam: 34 h
Offered frequency	Annually / summer semester
Duration / semester	1 semester / summer semester
Course language	English
Compulsory / optional	Optional
Requirements for participation	No formal requirements
Content	Steps in the development of models and the predominantly numerical mathematics that are needed for solving them.
	Types of behaviour of linear / nonlinear dynamical systems
	Basic numerical techniques:
	iterative solution of algebraic equations
	 solution of difference equations and ordinary differential equations methods to solve partial differential equations
	 optimization methods
Learning outcome	Ability to understand and analyze mathematical models from selected fields in the earth sciences (oceanography, biogeochemistry, ecology).
Course and examination	Partial exam
performance, type of exam	Examination performance: Written exam/oral exam (will be announced by the respective lecturer)
	Course performance: Successful assessment of example classes (practical
	exercises where students write / change models that are given as small
	computer programs in MATLAB / OCTAVE or PYTHON) or as announced by the respective lecturer
Literature	Numerical Recipes: William H. Press, Saul Teukolsky, William T.
	Vetterling und Brian P. Flannery

Code no.	01-01-03-MRS
Module title	Microwave Remote Sensing
Responsible for the module, lecturers / module assignment	Dr. Christian Melsheimer / Dr. Gunnar Spreen Module section 4 / Advanced Environmental Physics
Assignment to study programmes	Optional for MSc Environmental Physics Optional compulsory for MSc Marine Geosciences
Semester weekly hours (SWH)	2 SWH / 1,5x lecture (L) + 0,5x example classes (EC)
Workload / credit points	 3 CP, 90 h presence (L + EC): 28 h (2 SWH x 14 weeks) preparation, learning + examples: 28 h (2 SWH x 14 weeks) preparation for exam: 34 h
Offered frequency	Annually / winter semester
Duration / semester	1 semester / winter semester
Course language	English
Compulsory / optional	Optional
Requirements for participation	No formal requirements
Content	 Microwaves: Definition, physical quantities to describe them Microwave antennas, working principle of radiometers and radars Interaction of microwaves with the atmosphere and the earth surface, radiative transfer Retrieval of geophysical parameters from microwave measurements Current microwave instruments and satellites
Learning outcome	Knowledge of basic concepts and methods of microwave remote sensing, enabling the students to appropriately deal with microwave remote sensing data, understand and interpret them
Course and examination performance, type of exam	Partial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes or as announced by the respective lecturer

Literature	 Elachi, C.: Introduction to the physics and techniques of remote sensing, Wiley, 1987, 2006 Mätzler, C. (ed.): Thermal Microwave Radiation: Applications for Remote Sensing, ed.: Christian Mätzler, no.: 52, series: IEE Electromagnetic Wave series, The Institution of Engineering and Technology (IET), ISBN 0-86341-573-3 / 978-086341-573-9, IEE Press, Stevenage, Hertfordshire, UK, 2006 Janssen, M.A. (ed.): Atmospheric Remote Sensing by Microwave Radiometry, Wiley & Sons, 1993. Stephens, G.L.: Remote Sensing of the Lower Atmosphere: An Introduction,Oxford University Press, 1994. Ulaby, F. T, R.K. Moore, A.K. Fung: Microwave Remote Sensing, Active and Passive. Vol. 1: Microwave Remote Sensing Fundamentals and Radiometry; Vol. 2: Radar Remote Sensing and Surface Scattering and Emission Theory; Vol. 3: From Theory to Applications. Artech House, 1981 (Vol. 1), 1982 (Vol. 2), 1986 (Vol. 3).
------------	---

Code no.	01-01-03-OOOC
Madula (Ma	Ocean Ontine and Ocean Oclas Demote Oceanity
Module title	Ocean Optics and Ocean Color Remote Sensing
Responsible for the	Prof. Dr. Astrid Bracher
module, lecturers /	Module section 4 / Advanced Environmental Physics
module assignment Assignment to study	Optional for MSc Environmental Physics
programmes	Optional compulsory for MSc Marine Geosciences
Semester weekly hours	2 SWH / 1,5x lecture (L) + 0,5x example classes (EC)
(SWH) Workload /	3 CP, 90 h
credit points	 presence (L + EC): 28 h (2 SWH x 14 weeks)
	 preparation for rapport: 29 h
	 preparation for exam: 33 h
Offered frequency	Annually / winter semester
Duration / semester	1 semester / winter semester
Course language	English
Compulsory / optional	Optional
Requirements for	No formal requirements
participation	First the source source the principles of essen entire. Tenics included are
Content	First, the course covers the principles of ocean optics. Topics included are basic physics of light and interaction of light with matter in water. This includes the theory behind inherent and apparent optical properties and the, radiative transfer equation, e.g., the light field within the ocean is explained and the water-leaving radiance and remote-sensing reflectance terms are introduced. The effect of the various seawater constituents' (absorption, scattering, fluorescence) on ocean reflectance is presented. Optical instrumentation and measurement techniques to measure the relevant parameters are introduced. Secondly, the lecture focuses on ocean color remote sensing. This includes the principles of ocean color remote sensing, an overview of the technology of the instruments commonly used as ocean color satellite sensors and their satellite platforms. But also the streams of the data processing from raw data to the final geophysical product. Especially explained are various atmospheric correction methods and retrieval techniques of ocean color data products, such as phytoplankton biomass, phytoplankton photosynthetic activity, major phytoplankton groups, other particulates, coloured disolved organic matter and light penetration depth. Finally, also validation techniques of ocean color data products and the application of these data in global ecosystem and biogeochemical models are presented.
Learning outcome	Basics of radiative transfer in water (inherent and apparent optical properties) and ocean color remote sensing, ocean optics measurement techniques, atmospheric correction, empirical, semi-analytical, neuronal network retrieval techniques to determine water constituents and radiation in the water, validation of algorithms and sensors and potential of such data for application in ecosystem and climate studies and marine and coastal management.

Course and examination performance, type of exam	Partial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes, participation in lab tour and successful writing of an essay (one oral rapport on one lecture) or as announced by the respective lecturer
Literature	 C. D. Mobley "Light and Water", 1994 J. T. O. Kirk "Light and Photosynthesis in Aquatic Ecosystems", 1994 S. Martin "An Introduction to Ocean Remote Sensing", 2008 Ocean Optics Webbook: http://www.oceanopticsbook.info/ 2016 IOCCG Summer Lecture Series - lectures: http://www.ioccg.org/training/lectures.html

Code no.	01-01-03-PhyO2
Module title	Physical Oceanography II
Responsible for the	Prof. Dr. Monika Rhein
module, lecturers / module assignment	Module section 4 / Advanced Environmental Physics
Assignment to study	Optional for MSc Environmental Physics
programmes	Optional compulsory for MSc Physik
	Optional compulsory for MSc Marine Geosciences
Semester weekly hours (SWH)	2 SWH / 1x lecture (L) + 1x example classes (EC)
Workload /	3 CP, 90 h
credit points	 presence (L + EC): 28 h (2 SWH x 14 weeks)
	 preparation, learning + examples: 28 h (2 SWH x 14 weeks)
	 preparation for exam: 34 h
Offered frequency	Annually / summer semester
Duration / semester	1 semester / summer semester
Course language	English
Compulsory / optional	Optional
Requirements for participation	No formal requirements
Content	The topics of the lecture varies and will be announced at the start of the lecture. Topics include ocean change and impact on climate, more insight in climate relevant processes (large and small scale), method development, air - sea interactions.
Learning outcome	Insightful knowledge of processes important for climate role of ocean
Course and examination	Partial exam
performance, type of	Examination performance: Written exam/oral exam (will be announced by
exam	the respective lecturer)
	Course performance: Successful assessment of example classes and/or successful writing of an essay or as announced by the respective lecturer
Literature	Will be announced in the respective course.

Code no.	01-01-03-PoOc
Module title	Polar Oceanography
Responsible for the	Prof. Dr. Torsten Kanzow
<u>module</u> , lecturers / module assignment	Module section 4 / Advanced Environmental Physics
Assignment to study	Optional for MSc Environmental Physics
programmes	Optional compulsory for MSc Marine Geosciences
Semester weekly hours (SWH)	2 SWH / 1,5x lecture (L) + 0,5x example classes (EC)
Workload /	3 CP, 90 h
credit points	 presence (L + EC): 28 h (2 SWH x 14 weeks)
	 preparation, learning + examples: 28 h (2 SWH x 14 weeks)
	 preparation for exam: 34 h
Offered frequency	Annually / summer semester
Duration / semester	1 semester / summer semester
Course language	English
Compulsory / optional	Optional
Requirements for participation	No formal requirements
Content	Properties of cold sea water, sea ice formation, ocean – sea ice interaction, arctic circulation and water mass formation, antarctic circulation and water mass formation, ocean – ice shelf interaction
Learning outcome	Introduction to polar oceanography
Course and examination performance, type of exam	Partial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful particiation in the tutorials (this requires reaching at least 50% (of maximum number of points) in the assignments) or as announced by the respective lecturer
Literature	Will be announced in the respective course.

Code no.	01-01-03-PDAP
Module title	Practical Data Analysis with Python
Responsible for the	Dr. Andreas Hilboll
<u>module</u> , lecturers /	Module section 4 / Advanced Environmental Physics
module assignment	
Assignment to study	Optional for MSc Environmental Physics
programmes	Optional compulsory for MSc Physik
	Optional compulsory for MSc Marine Geosciences
	Optional for MSc Space Sciences and Technologies
Semester weekly hours	2 SWH / 1x lecture (L) + 1x example classes (EC)
(SWH)	
Workload /	3 CP, 90 h
credit points	 presence (L + EC): 28 h (2 SWH x 14 weeks)
	 preparation, learning + examples: 26 h (2 SWH x 13 weeks)
	homework project (examination): 36 h
Offered frequency	Annually / winter semester
Duration / semester	1 semester / winter semester
Course language	English
Compulsory / optional	Optional
Demoission of the	
Requirements for participation	No formal requirements
Content	The course will touch on the following subjects:
Content	
	 "But this worked yesterday, before I made some changes" or: An
	introduction to version control
	Getting started: How to setup your own computer for data analysis in
	Python.
	Hands-on introduction to the Python scientific ecosystem: Arrays and
	mathematical operations, using NumPy.
	 Labeled arrays or how to intuitively work with data, using Pandas and xarray.
	 Reading and writing data in common file formats.
	5 5
	Making both meaningful and beautiful plots, using matplotlib.
	 Statistical analysis in Python using the SciPy and Statsmodels packages.
	 Parameter estimation / regression using SciPy
	 An overview of the most common special-topic libraries for the research
	areas covered by the students' study programmes.
	, , ,
	 Working with geoscientific data and plotting maps, using Cartopy and Shapely.
	Other data analysis tasks needed by the students for their study
	program, upon demand.

Learning outcome	Upon successful completion of this course, the student will be able to work with scientific data using the Python scientific programming ecosystem, including the whole scientific data lifecycle (reading data, statistical analysis, plotting, storing results), following modern scientific programming best practices (e.g., version control, reproducibility, documentation,).
Course and examination performance, type of exam	Partial exam Examination performance: One graded homework project Course performance: Successful assessment of example classes or as announced by the respective lecturer
Literature	 VanderPlas, Jake: Python Data Science Handbook, O'Reilly, 2016 (freely available online at https://jakevdp.github.io/PythonDataScienceHandbook/)

Code no.	01-01-03-PPO
Module title	Practical Physical Oceanography
Responsible for the	Prof. Dr. Torsten Kanzow / Dr. Wilken-Jon von Appen
<u>module</u> , lecturers /	Module section 4 / Advanced Environmental Physics
module assignment	
Assignment to study programmes	Optional for MSc Environmental Physics
Semester weekly hours (SWH)	Block/Field course (corresponding to 2 SWH)
Workload /	3 CP, 90 h
credit points	 presence (L + EC): 45 h (field course 40 h + 5 h preparatory
	seminar)
	 postprocessing / protocol writing: 20 h
	 preparation for exam: 25 h
Offered frequency	Annually / summer semester
Duration / semester	1 semester / summer semester
Course language	English
Compulsory / optional	Optional
Requirements for participation	No formal requirements
Content	The students will join the research vessel Heincke in Helgoland. During day trips in the North Sea around Helgoland the instructors will first demonstrate the usage of oceanographic measurement equipment. The students will subsequently handle the equipment themselves under supervision. Technically, this includes: software preparation, equipment preparation, decision regarding sampling strategy, hardware demobilization, data recovery, data conversion, data analysis.
	 Ocean stratification and water masses based in hydrographic measurements; Ocean circulation based on ocean current measurements (underway + mooring); Ocean forcing: Meteorological measurements; Ocean surface processes: Underway surface measurements; Biological sampling
Learning outcome	 Familiarity with modern way of performing observations from a research vessel. Organization of field work including interdependence of different physical oceanographic and interdisciplinary measurement techniques. Skills regarding data acquisition, analysis, and interpretation. Skills with reporting on field work.
Course and examination performance, type of exam	Partial exam Examination performance: Successful writing of an essay/a report (participation in the field course is mandatory for taking the exam). Course performance: Successful writing of an essay / giving an oral presentation
Literature	Will be announced in the respective course.

Code no.	01-01-03-StEA
Module title	Statistics and Error Analysis
Responsible for the module, lecturers / module assignment	Prof. Dr. Reiner Schlitzer Module section 4 / Advanced Environmental Physics
Assignment to study programmes	Optional for MSc Environmental Physics Optional compulsory for MSc Physik Optional compulsory for MSc Prozessorientierte Materialforschung Optional compulsory for MSc Marine Geosciences Optional for MSc Space Sciences and Technologies
Semester weekly hours (SWH)	2 SWH / 1,5x lecture (L) + 0,5x example classes (EC)
Workload / credit points	 3 CP, 90 h presence (L + EC): 28 h (2 SWH x 14 weeks) preparation, learning + examples: 28 h (2 SWH x 14 weeks) preparation for exam: 34 h
Offered frequency	Annually / summer semester
Duration / semester	1 semester / summer semester
Course language	English
Compulsory / optional	Optional
Requirements for participation	No formal requirements
Content	Random variables, probability, density and distribution functions, expectation values, covariance and correlation, error propagation, statistical tests
Learning outcome	Introduction to statistics, error calculation and data analysis
Course and examination performance, type of exam	Partial exam Examination performance: Written exam/oral exam (will be announced by the respective lecturer) Course performance: Successful assessment of example classes and/or successful writing of an essay or as announced by the respective lecturer
Literature	Will be announced in the respective course.

Module Section 5: Research in Environmental Physics

Code no.	01-01-03-PresT
Module title	Proseminar on Presentation Techniques in Environmental Physics
Responsible for the	Dr. Andreas Richter
module, lecturers /	Module section 5 / Research in Environmental Physics
module assignment	,
Assignment to study	Compulsory for MSc Environmental Physics
programmes	
Semester weekly hours	2 SWH (2 PS)
(SWH)	
Workload /	3 CP, 90 h
credit points	• presence (L): 28 h (2 SWH x 14 weeks)
	 preparation of two talks: 40 h (20 h/week x 2 weeks)
	 preparation of one poster / extended abstracts: 22 h
Offered frequency	Annually / winter semester
oncica inequency	
Duration / semester	1 semester / winter semester (2nd academic year)
Course language	English
5 5	
Compulsory / optional	Compulsory
Requirements for	No formal requirements
participation	
Content	Structure and content of oral presentations, layout and organization of
	slides, how to give good oral presentations (content, presentation style,
	body language,), how to deal with questions and answers, how to
	prepare a poster for a conference, how to write an extended abstract, how to
	do a literature research, how to cite and how to use bibliographic software.
Learning outcome	How to prepare and give oral presentations, posters, and extended
	abstracts on topics of Environmental Physics.
Course and examination	Partial exam
performance, type of	Examination performance: 1 poster or extended abstract (4 pages)
exam	Course performance: Successful assessment of 2 oral presentations
Literature	Will be announced in the respective course.

Code no.	01-01-03-PrEPhy
Module title	Preparatory Project (Vorbereitungsprojekt)
Responsible for the module, lecturers / module assignment	Prof. Dr. John P. Burrows, Prof. Dr. Justus Notholt, Prof. Dr. Monika Rhein, PD Dr. Annette Ladstätter-Weißenmayer, Prof. Dr. Mihalis Vrekoussis, Prof. Dr. Veronika Eyring as well as further university lecturers of the IUP (Institute of Environmental Physics) / AWI (Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research) depending on the area of research Module section 5 / Research in Environmental Physics
Assignment to study programmes	Compulsory for MSc Environmental Physics
Semester weekly hours (SWH)	Working in the laboratories of the IUP / AWI Individual instruction (practical training) Preparation of a thesis paper on a possible research project which - as a rule - should be closely related to the subsequent Master's Thesis.
Workload / credit points	18 CP, 540 h
Offered frequency	Annually / winter semester
Duration / semester	Winter semester (2nd academic year)
Course language	English
Compulsory / optional	Compulsory
Requirements for participation	No formal requirements
Content	The content is related to the respective area of research of the preparatory project.
Learning outcome	 Transfer of a scientific problem/question into an experimental and/or theoretical study Successful strategies for the planning and conducting of scientific studies Summarize and present preliminary scientific results in a thesis paper
Course and examination performance, type of exam	 Module examination (graded) Successful assessment of the preparatory project Thesis paper on research project which can be conducted within the context of the Master's Thesis
Literature	Will be announced by the respective examiners.

Module 6: Module Master Thesis

Code no.	01-01-03-MTEPhy
Code no.	
Module title	Master Thesis
Responsible for the <u>module</u> , lecturers / module assignment	Prof. Dr. John P. Burrows, Prof. Dr. Justus Notholt, Prof. Dr. Monika Rhein, PD Dr. Annette Ladstätter-Weißenmayer, Prof. Dr. Mihalis Vrekoussis, Prof. Dr. Veronika Eyring as well as further university lecturers of the IUP (Institute of Environmental Physics) / AWI (Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research) depending on the area of research Module 6 / Final Module
Assignment to study programmes	Compulsory for MSc Environmental Physics
Semester weekly hours (SWH)	Master's Thesis Colloquium to the Master's Thesis
Workload / credit points	30 CP, 900 h
Offered frequency	Annually / summer semester
Duration / semester	Summer semester (2nd academic year)
Course language	English
Compulsory / optional	Compulsory
Requirements for participation	All the mandatory exams of the module sections $1 - 3$ and the module "preparatory project" have to be passed.
Content	The content is related to the respective area of research of the Master's Thesis.
Learning outcome	 Transfer of a scientific problem/question into an experimental and/or theoretical study Successful strategies for the planning and conducting of scientific studies Ability for a critical evaluation, assessment and discussion of own scientific results Summarize and present scientific results in a Master's Thesis
Course and examination performance, type of exam	 Successful assessment of the Master's Thesis (graded) Successful colloquium to the Master's Thesis (graded) Credit points are granted on the basis of the marks for the Master's Thesis and the colloquium.
Literature	Will be announced by the respective examiners.